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Duality relationships in finding a best approximation from a noncom-ex cone in
a normed linear space in general, and in thc space of bounded functions in
particular. are investigated. The cone and the dual problems arc defined in terms
of positively homogeneous super-additive funetionals on the space. Conditions an:
developed on the cone so that the duality gap between a pair of primal and dual
problems does not exist. In addition. Lipschitz continuous selections of the metric
projection are identified. The results arc specialized to a convex cone. Applications
arc indicated to approximation prohlems. :'.' 1991 A""demlc Pre". Inc

J. IT\TRODl:CTIO?\

Duality in a normed linear space X refers to a relationship between a
pair of extremum problems a primal problem on X and a dual problem
on the dual space X* of continuous linear functionals on X, or more
generally, a bigger space i of nonlinear functionals on X. Given a noncon­
vex (i.e., not necessarily convex) cone K c X, which is defined by positively
homogeneous super-additive functionals in X, the primal problem is to find
a best approximation to f in X\K from K. In this article, dual problems
corresponding to this primal are defined in terms of functional in X* and
i. Some basic duality results in X are established to obtain lower bounds
on d(f, K). When X is the space of bounded functions with weighted
uniform norm, conditions are developed on K so that the "duality gap"
between a pair of primal and dual problems does not exist; i.e., the optimal
values of the two problems are equal. In addition, a best approximation I'
to each f is identified so that the selection operator mapping f to f'
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is Lipschitzian. Some results are derived for the space of continuous
functions. Examples from approximation theory illustrating the results are
given.

We consider a real normed linear space X with norm II· r and its
real dual X* which is a Banach space with the norm Ilx*11 =
sup{ Ix*(/)I:f E X, II/II ~ I }, x* E X*. A nonempty subset K of X is called
a cone (with vertex 0) if if E K whenever f E K and ;. ~ O. A convex cone
is a cone which is convex. It is easy to verify that a cone K is convex if and
only if f + g E K whenever f g E K. If K is a cone. then d(j, K) =
inf{ Ilf - gl!: g E K} ~ Ilfll, since 0 E K. To motivate the discussion, we first
state some basie duality results for a convex cone K. Duality in approxima­
tion has been investigated in detail in [3]. The dual. polar. or conjugate
cone KO of K is defined by

KO = {x* E X*: x*(/) ~ 0, f E K}.

It is known that KO is convex and weak * closed. A well known duality
result is

d(j, K) = max{x*(f)/llx*ll: x* E KO\ {O*}}. /EX\K,

where 0* is the zero functional. (See, e.g., [3, Corollary 5.3(a)]; see also
[8,12.17,18] and other references given there.) Suppose now that Lc X*
and L -I {O*}. Define a convex cone K by

K= {fEX:X*(f)~O,X*EL}.

Then KO=cc(L) and K#X, where cc(L) is the smallest weak* closed
convex cone containing L. In particular, L and its convex hull co(L) are
in KO and, hence,

d(j: K) ~ sup{ x*(f)!I,x* I: x* E coIL l\ {o*} }

~sup{x*(f)!llx*lt:x*EL\{O*}}, (EX\K. (1.1)

When f is fixed, the first term dU: K) = inf{ III - gil: g E K} in (1.1) defines
a primal problem on X, and the middle and the last terms define two dual
problems on the space X*. In [18], we investigated necessary and sufficient
conditions so that equalities hold throughout (1.1). When equalities hold,
d«(, K) may be easily computed from L using the last term.

Suppose now that LeX is a nonempty set of real nonlinear functionals
on X. We define a cone K by

K= {fEX:;tU)~O,XEL}.
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We assume that each ~i in L is a pointwise infimum of a set of functiona!s
in X*. This constraint is motivated by applications to approximation
problems. Then each x is positively homogeneous and super-additive and,
hence, concave (see Section 2). Clearly, K is not necessarily convex. In
Section 2, analogous to (1.1), we develop dual problems on x* and X
which give lower bounds on d(f, K). In Section 3, we apply the results to the
space of bounded functions B with weighted uniform norm and obtain con­
ditions on K so that the duality gaps do not exist. We identify Lipschitzian
selection operators T mapping I to one of its best approximations f' so
that If - h' I: ~ c III - M for some c > 0 and all j; hE B. We also specialize
the treatment to a convex cone and the space C of continuous functions.
In Sections 4 and 5, we illustrate the results for nonconvex and convex
cones by examples of approximation problems. In Section 5 we consider
more complex cones. Our previous work on Lipschitzian selections
[22. 23] required that K be closed under translation by constant functions
and that the uniform norm have unity weight function. Such constraints
arc not required in this article. In particular, the convex cone of
sub-additive functions in Example 4.3 is not closed under translation by
constant functions. For additional work on continuous and Lipschitz
continuous selections in approximation see [4. 5, 6, 10. 13].

2. DUALITY I:-J NOR~IF.D LINEAR SPACES

In this section we derive lower bounds on dU; K).

A real-valued nonlinear functional ~i on X is said to be positively
homogeneous if x()f) = i.xU) for all f in X and all ). ~ O. Hence X(O) = O.
Let II~ii: = sup{ Ix(f)1 :f E X, In ~ I}. By positive homogeneity we have
IxU)1 ~ Ilxll lIf'l for all f in X. We say x is bounded if il~~!i < x. We caJl
.~ super-additive if x(f + g) ~ .~(f) +x( g) for all j; g in X.

PROPOSITIO:-J 2.1. Suppose that x is a positively homogeneous super­
additive functional on X.

(a) The following holds for all f, g in X and all 0 ~ i. ~ 1.

(i) ~~(4+ (1 - i.)g) ~ i..i(n + (I - i. ).i( g); i.e., x is concave on X.

(ii) x( -f) ~ -xU)·
(iii) IxU) - x( g)! ~ max{ -.i(f - g),-.i( g - f)} ~ I!Xil III - gil.

(b) The following three conditions are equivalent.

(i) ~~ is continuous at O.

(ii) x is continuous everywhere.

(iii) .i is bounded.
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Proof To prove (a), we observe that (i) follows by posItIve
homogeneity and super-additivity. Again, by super-additivity, we have
0= X(o) ~ X(f) + X( -f), which gives (ii). Writing f = (f - g) + g, we
obtain x(f) ~ x(f - g) + x( g). Interchanging f and g we obtain (iii). To
show (b) we note that by positive homogeneity, if x is continuous at 0,
then it is bounded. The rest of (b) follows from (a)(iii). The proof is
complete.

We remark that if X denotes the set of all positively homogeneous
bounded functionals on X, then X is a linear subspace with norm Ilxil,
and X*cX.

Let P and Qp' PEP, be index sets. For each p in P, let {x;,q: q E Qp} be
a set of nonzero functionals in X*. Define the pointwise infimum of
{x;.q:q} by

and

PEP, (2.1 )

(2.2)

Clearly, K is a cone which is not necessarily convex. We then have the
following.

PROPOSITION 2.2. (a) For each p in P, xp is positively homogeneous and
super-additive with

pEP. (2.3)

All properties stated in Proposition 2.1 apply to xp •

(b) If Kp.q= {kEX: x:.q(k)~O}, then Kp,q is a convex cone for all
p,q. If Qp is finite for all PEP, then K=n{U{Kp,q:qEQp}:PEP},
Ilxpll < oc for all pEP and K is closed.

Proof (a) Clearly, xp is positively homogeneous. To show super­
additivity, let pEP and f, g E X. Then X;,q (f+ g) = x;'q (f) + x;'q (g) ~
xp(f) + xp(g). Hence xp(f + g) ~ xp(f) + xp( g).

To establish (2.3), let 8> 0, PEP, and c = SUPq{ Ilx;'qll } ~ oc. If°< ~ < c,
then there exists q E Qp such that Ilx;'qll > ~. Again, there exists g in X with
~lgil=1 such that x;'q(g)~-:lx:.qll+8. Hence, xp(g)~-'Ix;.qll+c. It
follows that IIxpll~-xp(g)~llx;.qll-e>~-f;, which gives !Ixpll~c.

If c = oc then (2.3) is shown to hold. Otherwise, let f E X with Ilfll = I.
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Then xI' (f) :;( X;.q (f):;( I:x;.q I :;( c. Also there exists q E Qp such that
x;.c/f)-e:;(_ip(f). Hence,

-.xp(f) ~ -x;.q(f) +c ~ Ix/~): + c:;( c + f..

We conclude that IXp(f)1 :;(c+e and ,lxp:1 :;(c. Thus (2.3) holds.

(b) If Qp is finite then, by (2.3), I.~pl < x.:. By Proposition 2.1(b), .l:p
is continuous for each p and, hence, K is closed. The remaining assertion
about K follows immediately.

The proof is complete.

PROPOSITIO" 2.3. Let K i , i E 1, be an arbitrary collection of nonempty
subsets of X and f E X. Then the following holds.

(a) d(j; U, KJ=inf{d(j; K i ): iEl),

(b) d(f, ni KJ~sup{dCf, K i ): iEl).

Proof To prove (a), denote its right-hand side by p, let K' = UK" and
let e > O. Then there exists some j E 1 such that d(j, K) < p + e/2. Again
there exists k E Kj such that lif - kl < d(j; /() + e/2 < p + c. Since k E K'
we have dCf, K'):;( Ii! - kII, which gives d(f, K'):;( p. Now, if k E K' then
k E K i for some i, and III - kll ~ dCf, KJ ~ p. Hence d(j, K') ~ P and (a) is
established. The proof for (b) is simpler. The proof is complete.

THEOREM 2.1 (Duality bounds for nonconvex cone K). Assume Qp is
finite for each pEP. Let f E X and define

:x(f) = sup{ inf{ x;'q (f)illx;): : q E Qp} : pEP},

fJ(f) = sup{ xI' (f)/,Ixpll : pEP}.

Then d(.f; K)~'Y.(f)~fJ(f)for IEX\,K. Ilfor each PEP. liXpl' = ,lx;.qUrJ/"
all q E Qp, then d(j, K) ~ :xU) = fJU) for f E X\K.

We first establish the following lemma.

LEM'vfA 2.1. Assume Q I' is finite for each pEP. Then the following are
equivalen t.

(a) IEX\K.

(b) :x(f»0.

(c) {/(f) > O.
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Proof By Proposition 2.2(b), Ilxpll < x; for all pEP. Hence, by the
definition of K, (a) and (c) are equivalent. Now (b) holds if and only if
X;.q(f) > 0 for some pEP and all qEQp which is equivalent to (c). The
proof is complete.

Pro01 01 Theorem 2.1. We first establish that :J.(f) ~ [J(f), IE X\K. By
Lemma 2.1, it suffices to consider pEP with xp(f) > O. For such p, if
q E Qp, we have x;.lf) ~ xif) > O. Since, by (2.3), lix;qll ~ :Ixpll < OC, we
find that X;,q(f)/iix;,qii ~ xl' (f)/ii.-rpil, which establishes !Y.(f) ~ fJ(f)·

To show d(j, K) ~ x(f), let k E Kp,q which is defined in Proposi­
tion 2.2(b). Then x;,q(k) ~ O. Hence, Ix;'qll III _. kll ~ x;.q(f- k) ~ X;, 'I (f),
which gives 111- kll ~ x;'if)/llx;,ql = cp,q, say. Thus, d(j, Kp,q) ~ cp,q'
(This inequality also follows from (1.1) by letting L be the singleton set
{x;,q}.) We now use Proposition 2.3. If Kp= U{Kp,q: q E Qp} then we have
d(j, Kp) = min q{d(j, Kp,q)} ~ minq {cPo'!}. Since K = n{Kp: pEP}, we find
that d(j; K) ~ sUPp {d(j, Kp)} = 'Yo(f).

Finally to show (X(f) = [J(f) under the stated condition Ilxpll = Ilx;.ql, we
obtain Xl' (f)/llxpll = inf{x;,q(f)/llx;'qll: qE Qp} for each p from the defini­
tion of xl" It follows that :J.(f) -= [J(f). The proof is complete.

3. Dt:ALITY AND LIPscHITZIAK SELECTIONS I~ UNIFORM ApPROXI~ATION

In this section, we consider the problem of uniform approximation and
obtain conditions under which d(f, K) = a(f) for IE X\K in Theorem 2.1.
We also identify Lipschitzian selections as defined in Section 1. We con­
sider two cases when K is a nonconvex cone and a convex cone. In later
sections we apply the results to problems in approximation theory. The
following example will show that, in general, d(j, K) > f3(f) for IE X\K,
however, under certain conditions we will establish that d(f, K) =
a(f) = f3(f). Let X be the real line and Xfl (f) = 2j, XI2 (f) = j, wherc I EX,
and x= min {xii' XI2}' Then K = (- 00, 0], Ilxll = Ilxllll = 2 and IlxM = 1.
If 1= 1, then 1 = d(j, K) = :J.(f) > f3(f) = !.

Let S be any set and 0 < w(s) < oc for all s in S be a weight function on
S. Let B denote the set of all real functions I on S such that IIIII = 11/11" =
sup{w(s)l/(s)1 :SES}<oo. Then B is a Banach space with norm 11·11,
which is called the weighted uniform norm. Note that an I in B is not
necessarily bounded on S. Let sl be the set consisting of certain nonempty
countable subsets of S. Suppose there is a mapping r: .91 -> 25

\ {0} such
that r(A) n A = 0 for all A Ed. Let S' denote U{r(A): A Ed}, i.e., all the
elements of S in the range of r. For A in .91, let q = qA denote a non­
negative function on A such that Iql =L{q(t)/w(t): tEA} < 00. Let
P={(A,s):AE.91, sEr(A)} and Qp, for each p=(A,S)EP, be a.set of
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above defined functions q on A with iq I < 'X;. We define linear functionals
indexed by p = (A, .1') E P and q E Qp as follows.

x;.Jll = f(s) - L {q(t) f(i): tEA}. (3.1 )

We use the notation of Section 2 with X = B and define .il' and K by (2.1 )
and (2.2). respectively. Clearly, .ip may be written as

.Xp(.f)=I(s)-sup { L q(t)I(t):qEQJ.
'I c A )

LEM\fA 3.1, Suppose that G c K is nonempty, and j()r all g in G, g ~ I
holds/or some f in B. Let k(s) = sup {g(s): g E G}, .I' E S. Then k E K.

Proof Clearly, kEB. Now, for all gin G we have fi~k and .xp(fi)~O

for all pEP. Suppose S E S'. Then, for any p = (A, .1') E P, q E Qp, and g E G.
it follows from (3.2) by the nonnegativity of q that

g(s) ~ sup {I q(t) g(t)} ~ sup h: q(t) k(t)~.
q A 'I \. A )

Hence k(s) ~ SUPq {l: q(t) k(t)} which is xp(k) ~ O. Thus k E K. The proof is
complete.

Next we establish the existence of a best approximation when Qp is finite
for each p. A best approxmation l' of f is called the maximal best
approximation if l' ~ g for all best approximations g to f

PROPOSITIO!'< 3.1. Suppose that Qp is .fInite for each p. Then, ever}' I in
B has a maximal hest approximation Irom K.

Proof For convenience let d(f, K) = p, u = f -- plw, and v =

f + (p + 1 )iw, Clearly, u,~' E B. Now for each n, there exists f" E K such
that III-[":I~p+I/I1=P,,, say. Then I-p,,/w~.f~~I+p,,/>t'~z;since
PI1~P+1. Define g,,=supUm:m~n}. Then gn~fil1!I' and, by
Lemma 3.1, g,,0K. Since fi"~f,,, for all m~11 and Pn~I~P/l' we have
f -Pm/\I'~j;"~ fin~I+p"hl': for all m~n. Letting m --+'X;. we obtain

for all 11. If g(.I')=lim g,,(.I'), SES, then we conclude that I-'p/w~g~
I + p/It' which is i!I - gl ~ p. We show that g E K; this will establish that
g is a best approximation. As shown above, we have u ~ g" ~ G. Now
LA q(t) lu(t)1 ~ !Iul~ :ql < x and LA q(t) lu(t}1 ~ Ilvll Iql < X;'. Hence, by the
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bounded convergence theorem [7], LA q(t) gll(t) -> LA q(t) g(t) as n -> x.
We conclude that x;.i gil) -> X;,q Ud for all q E Qp. Since Qp is finite we
have xp(gll)->xp(g). Again sinee gnEK we have xp(gn)~O and, hence,
xp (g) ~ 0 for all p. Thus g E K and is a best approximation. Now if G is
the set of all best approximations, then g ~ f + p/w for all g in G. Sinee
f+pjwEB, by Lemma 3.1, !,(s)=sup{g(S):gEG} is in K. It is easy to
verify that !' is a best approximation. Clearly, it is the maximal best
approximation. The proof is complete.

PROPOSITION 3.2. Let p = (A, s) and q E Qp'

(a) Ilx;,q;1 = Ijw(s) + L {q(t)jw(t): tEA} = Ijw(s) + Iql.
(b) Ilxpll = l/w(s) + sup{ Iql :q E Qp} = sup{ Ilx;)i : q E Qp}.

Proof (a) If fE B and If II ~ I, then If(u)1 ~ I/w(u) for all u In S.
Hence,

IX;,q(f)1 ~ If(s)1 +Lq(t) If(t)1 ~ Ijw(s) + Lq(t)/w(t) = Ijw(s) + Iql·

Now, define g on S by g(s) = -ljw(s), g(t) = Ijw(t) for t in A, and 0
elsewhere. Since S E S\A, this is possible. Clearly, II gil = 1. Then
X;,q(g) = Ijw(s) + Iql and the result follows.

(b) This follows at once from (a) and (2.3).

The proof is complete.

For each f in B, let Kf = {kEK:k~f} and l(s)=sup{k(s):kEKf },
s E S. If l E K, then l is called the greatest K-minorant of f Similarly,
letting K;={kEK:k~f}' define [(s)=inf{k(s):kEK;}, SES. IffEK, it
is called the smallest K-majorant of f

PROPOSITION 3.3. Suppose fEB. Then the following (a )-(c) are equiva-
lent and imply (d).

(a) Kf # 0·
(b) lEK.

(c) l(.I') > - 00 for all sin S.

(d) l ~ f andl(s) = f(s) ifS E S\S'. Hence, ~rSr= {s E S: f(s) > l(.I')},
then Sfc S.

Proof If (a) holds then by Lemma 3.1 with G = Kf we have that l E K,
which is (b). If (b) holds, then l E Band (c) holds. If Kf = 0, then
l= -00. Hence (c) implies (a). If (b) holds then define g on S by
g(s) = f( s) for s E S', and g(s) = f( s), otherwise. Then g is in B and satisfies
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.xp(g)~O for all p. Thus gEK, and, consequently, g~f This gIves
/(.1') =f(s) for SE S\8' which is (d). The proof is complete.

We let P, = {p = (A, s): PEP}, s E S', One may easily verify that P, to 0
for all s in S' and P = U{P,: s E S'}. For hE B define hO by

hO(s)=min{h(s), h(s)-sup{.xp(h): pE P,}},

= h(s), .I' E S\S'.

Substituting for .xp from (3.2) in (3.3) we obtain

hO(s) = min {h(S), inf {sup {~q(t) h(t): qE Qp}: pE p,}},

SE S',

(3.3 )

SES'. (3.4)

Note that if k, hE Band k ~ h, then (3.4) shows that kO ~ hO. Moreover, if
k E K, then .xp(k) ~ 0 for all p, and hence by (3.3), we have kO = k. For each
f in B\K, define hf = f +'X(f)/I'/, where ':I.(f) is defined in Theorem 2.1.
Then Ilh[11 ~ IJI + ':I.(f) ~ Ilf!I + d(j; K) and hfE B. This hr will play an
important role in the following analysis. Letting h = h[ for convenience, we
define hO = hJ by (3.3).

PROPOSITION 3.4. Assume that Qp is finite for each pEP. Iff E B\K then
hO = h~ E B with Ilh - hO ! ~ 2':1.(f). If hO E K, then hO = Ii, where /1 is the
greatest K-minorant of h = hf . Consequently, Ilh -nil ~ 2:'X(f) and

Ii(s) = min {h(S), inf {max {~q(t) h(t): q E Qp}: PEP,}},

= h(s), s E S\8'.

SE S'

(3.5 )

COROLLARY. If h = f + plw, where 'X(f) ~ P < XJ and hO is defined by
(3.3) for this h, then the above proposition holds with :'X(f), hf , and h~ there
replaced respectively hy p, h, and hO. .

Proof Since Qp is finite, by Proposition 2.2(b), we have 11;\'pll < x. For
convenience, let (j = ':I.(f). Also let s E S' and pEPs. Then, by the definition
of 0, we have 0 ~ min {x;'.q (f)/llx;'.) : q E Qp}. Hence, there exists q E Qp
such that 8 ~ x;'.q (f)/llx;') , which gives 8 Ilx;'.q:! ~ x;'." (f). By substituting
f = h - O/w wc obtain

8(llx;')1 + x;',,(I/w)) ~ x;'." (h).

Again, II x;') I = l/w(s) + Iql by Proposition 3.2(a), and x;'." (l/w) =

l/w(s)-Iql as may be easily verified. Hence 28/w(s)~x;.q(h),which gives
28/w(s)~xp(h) for all pEP,. Then by (3.3) we have h(s)~ho(s)~

h(s) - 20jw(s). Also, h°(.~) = h(s) if s E S\S'. Thus hO E B with lih - hO:1 ~ 20.
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We now show that if k E K and k :::; h then k:::; hO. Since, by assumption
hO E K, this will establish that hO = Ii. Let s E S' and p = (A, s) E Ps' Then, by
(3.2), there exists q E Qp such that

xp(k)=k(s)- I,q(t)k(t).
A

Also,

xp(h):::;h(s)- I,q(t)h(t).
A

Hence,

Xp(h) - :r:p(k):::; (h - k )(s) - I, q(t)(h(t) - k(t)).
A

Since k:::;h and xp(k):::;O as kEK, we obtain from the above inequality
that k(s):::; h(s) - xp(h) for all pEP,. Now, since k:::; h, we conclude from
(3.3) that k(s):::;ho(s), SES'. For SES\S', we have k(s):::;h(s)=hO(s).
Hence k:::; hO and hO = Ii as asserted. From (3.4) we obtain (3.5). The
corollary may be proved exactly as above. The proof is complete.

The above proposition is fundamental in establishing our next theorem.

THEOREM 3.1 (Duality for nonconvcx K). Assume that Qp is .finite for
each pEP and hO= hJ E K for each IE B\K. Then

fE B\K.

(3.6 )

Furthermore, f' = Ii is the maximal best approximation to I with Ilh -lill :::;
2rx(.f).

COROLLARY. Under the hypothesis of the theorem, if for each p in P,
Ilxpl' = Ilx;'ql holds for all q E Qp, then

d(j, K) = a(.f) = {3(.f), fE X\K.

Proof Let 8 = .x(.f) for convenience. By Proposition 3.4 we have hO = Ii
and 1111 -lill :::; 28. This gives h -Ii:::; 28!w. Now since f = h - 8jw, we obtain
f -/1 = h -Ii - (Jjw:::; Ojw. Again, since h~ Ii, we have f - Ii ~ - Olw. Thus
Ilf-1i!1 :::; 8. Now, nE K, and by Theorem 2.1, d(j; K) ~ O. We conclude that
d(j; K) = III - nil = O.

If g is any best approximation to f then U - gi, = 0 and hence,
f - O!w:::; g:::; f + Ojw. Since g E K and Ii is the greatest K-minorant of h, we
have g:::; Ii and fz is the maximal best approximation.
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The corollary follows immediately since, by Theorem 2.1, xU) = ~(n

under the condition on the norms. The proof is complete.

We remark that the condition, hO =h~ E K for each f E B\K, of the above
theorem may be replaced by the stronger condition, hO

E K for eaeh hE B.
Note that (3.6) allows us to compute d(.f; K) easily using the defining
functionals x/~.q of the cone K.

THEOREM 3.2 (Alternative forms of duality for nonconvex K). Suppose
that the hypothesis of Theorem 3.1 holds. Let f E B\K and

PEP,

SES'.

Then Yp is a positively homogeneous super-additive functional on B with
1\ )\11 = 1 and the following duality holds:

dU, K) = suP{Yp(f): pEP} = sup{.1(S): S E S'}, fE B\K.

Proof Define y;.q = x;.q/llx;.qll. Then :i Y;.qi! = 1 for all p, q and
YI' = min {Y;.q : q}. As in Proposition 2.2, ,vI' is positively homogeneous
super-additive and by (2.3), 115)1 = 1. The duality is simply a restatement
of Theorem 3.1. The proof is complete.

We now investigate Lipschitzian selections. For each p = (A, .1') E P and
qEQp, let <Jp.q="L{q(t):tEA}. Define

I1=SUp{l1 p•q :PEP,qEQI'}'

THEOREM 3.3 (Lipschitzian selections for nonconvex K). Suppose that
the hypothesis of Theorem 3.1 holds and (J < -::f:. Let f' be the maximal best
approximation to f in B. (If f E K then f' =f) Then the selection operator
T: B -> K, defined hy T(f) =.1", is Lipschitzian satisfvinx it TU) - T('~lII ~

c Ilf·- gil for all f, g E B, where c = 2 maxi 1, (J}.

Prool First assume that f g E B\K. Let f, > 0, h = f +rx(f)/w, and
k = g + x( g)/w. Then by Theorem 3.1 we have f' = Ii and g' = k. Lets E Sk'
where Sk is as defined in Proposition 3.3(d), and c;' = I:/w(s). By (3.5) we have

k(s) = inf {max {~q(t) k(t): q E QI'}: P E pl
Hence, there exists PEPs such that

/(.1') ~ max {~q(t) k(t): qE Qp} - c;'. (3.7 )
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Then, by (3.5) we have
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h(s):( max {~q(t) h(t): qE Qp}. (3.8 )

Again, there exists q E Qp such that Ii(s):( I- q( t) h(t). Then k(s) ~
I-q(t)k(t)-c'. We obtain, therefore, Il(s)-k(s):(I-q(t)(h(t)--k(t))+c'.
Multiplying both sides by w(s) we have

w(s)(li(s)-K(s)):(O'pq .Ih-k +,,:(0' !!h-ki +t;,

for all SES•. If SES\S., then by Proposition3.3(d), we have k(s)=k(s).
Since Ii(s):(h(s) we obtain w(s)(h(S)-K(S)):( !h-kil. We then have
w(s)(h(s)-/((s)):(c' 'Ih-kll +1:: for all s in S whcrc c'=c;2. Interchanging
hand k we obtain II Ii - KI :( c' II h - k Ii. By Theorem 3.1, :1.(f) = d(j; K) and
:1.( g) = d( g, K), and also Id(j; K) - d( g, K) :( 1:/ - g!, by a well known
result. We conclude that

Ih-kl.:( I!f- gl! + 1:J.(f)-:x(g)I:(2 Ilf- gii,

whence we have 111i-K!1 :(clf-gl.
Now suppose that fE K and g E B\K. Then we let k = g +:x( g) as before

and Ii=h=f(i.e., consider ct(f)=O). Suppose SESk • Then (3.7) holds as
before. Since f E K, we find that ,ip (f) :( 0 for p = (A, s), where s and A are
as in (3.7). This is equivalent to (3.8) with Ii = h = f The rest of the
argument may be carried out as above to show that w(s)(ll(s)-K(s)):(
0' I!h - kll. Now K(S):( k(s) and Ii(s) = h(s) = f(s). Hence, w(s )(k(S) -li(s)) :(
lih-kll. Thus, w(s) Ih(s)-K(s)1 :(c' Ilh-k for all SES•. If SES\S.. then
we argue as above, and noting that :1.( g):( .J- gli, we complete the proof
of Iii - kli :( c Ilf - gil. If j; g E K then the result holds. The proof is
complete.

We now consider special cases of K. Define j1( \1') = sup{ w(s): ,I' E S} and
i.(w)=inf{w(s):sES}.

LEMMA 3.2. Assume that O'p.q = 1 for all pEP and q E Qp.

(a) If j1( w) < Xl, then all constant functions are in K and K is closed
under translation by these functions.

(b) If O<A(W):(j1(w)< x, then K has properties as stated in (a),
IE K for all f in B, andlxpll :( 2/A(w) < X f()r all p in P.

(c) If w = 1, then conclusions of (a) and (h) hold, and I' ,if) =
II x;)1= 2 for all pEP and q E Qp.
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Proof (a) The condition p( IV) <x shows that all constant functions
are in B. Since (J p. q = 1, substitution in (3.2) verifies that _ip (f + ~) = .X'p (f)
for all real :x and fEB. Hence, K is translation-invariant as stated. Since
oE K. all constant functions are in K.

(b) We have f;::: -llfl!/w;::: -!Ifii/i.(w)=p, say. Since p(w)< x, by
(a) we have that p E K and hence Kf # 0. By Proposition 3.3, J E K. Also,
by Proposition 3.2, li.ipll ~ 2jA(W) for all p.

(c) This follows from Proposition 3.2.

The proof is complete.

Next we apply Theorems 3.1 3.3 to nonconvex K under special condi­
tions.

PROPOSITION 3.5. Suppose that the hypothesis of Theorem 3.1 holds. A Iso
assume that p( IV) < ,x and (Jp." = 1 for all pEP and q E Qp. Then the conclL/­
siems of Theorems 3.1-3.3 hold witll 1111 -/ill = 2:x(f) and c = 2.

Proof By Theorem 3.1, iif-Jill =Y.(f)=0, say. By Lemma 3.2(a), K is
translation-invariant as stated there. Hence, given [; > 0, there exists .I' E S
with w(s)(f(s) -li(s)) > (J-[;. Now h =f + (J/It' and hence

w(s)(h(s) -/its)) = 11/(S)(f(s) -/its)) + 0 > 20 - f..

Hence, 1111 -liil = 2a(f). Clearly, (J = 1 and, hence, (' = 2. The proof IS

complete.

Recall that YP and I(s) are defined in Theorem 3.2.

PROPOSITION 3.6. Suppose that the hypothesis of Theorem 3.1 holds.
Suppose also that w = 1 and (JP.q = 1 for all pEP alld q E Qp' Then,

de! K) = :x(f) = {/(f) = Ilf - JII/2

= sup {f(S) - max {~q(t) I(t): q E Qp} }.' 2, fE B\K, (3.9)

where J is the greatest K-minorant off and the supremum is taken over all
p = (A, s) E P. Also, f(s) -/(.1') = 2 max {.1(s), O} for all SE 5)'.

Proof Since w= 1 we have i.(w)=p(w)= 1. Then, Lemma 3.2(c)
applies showing that K is closed under translation by constant functions.
IE K for allfin B, and lipll = Ilx:)1 = 2 for all p, q. Since h =I+ :x(f). by
translation-invariance we have n= /+ Y.(f). Hence,lh - Jill = IiI - II.
By Proposition 3.5 we find that III - JII = Ilh - nil = 2:x(f). Since the
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hypothesis of the corollary to Theorem 3.1 is satisfied, (3.9) follows. The
last equality in (3.9) is obtained by substitution in P(f) for xI' from
(3.2). To show l(s)-!(s)=2 max {.1(s), O}, we note that Yp=xpl2 and
hence 1(s)=sup{xp (f):pEP,.}/2. Since h=f+'J.(/) and Fl=!+rx(f),
substituting for hand fi in (3.5) we observe that (3.5) holds when h and Ii
there are replaced by I and f This latter equation may easily be shown to
be equivalent to !(s) = min {f(s ),f(s) - 21(s)} from which the required
result follows. The proof is complete.

We remark that the equality d(f, K) = 'If-liI/2 is obtained in [22,23 ]
under different assumptions. To make an observation on translation by
constant functions considered in Lemma 3.2 and Propositions 3.5 and 3.6,
let 0 <). < oc be a function on S. Instead of (3.1) define x:,q by

X;,q(/) = f(s)1 I.(S) - L {(q(t)/I.(t))/(t): tEA },

where, for all p = (A, s) and q E Qp, we have (J",q = 1 and
LA q(t)/(I.(t) w(t)) < 00. Then the cone K, defined as before with these new
functionals, will be closed under translation by functions of the form :xl,
where rx is real. Considering a new weight function w' = AW, norm ;1/1;' =
sup{w'(s) I/(s)l:sES}, space B'= {(1).:/EB}, cone K'= {k/i.:kEK},
one may show that the above problem of finding a best approximation to
IE B from K relative to 11.11 is equivalent to finding a best approximation
to .f' =IIi. E B' from K' relative to 1;'11 '. Note that 11/11 = jIf' II '. Clearly, K'
is closed under translation by constant functions, since it is defined, as
before, by functionals of the form (3.1) with (Jp.q= 1. Thus sometimes K
may be transformd to K' which is translation-invariant by constant func­
tions. However, the convex cone K of sub-additive functions in Example 4.3
cannot be so transformed to K'.

We now consider the case when K is a convex cone. Let X;,q be given by
(3.1) and define K by

(3.10)

where Qp, PEP, is not necessarily finite. It is easy to verify that K is a
closed convex cone and K = n{Kp,q: PEP, q E Qp}, where Kp,q is as in
Proposition 2.2. To place this problem in our earlier format for a noncon­
vex cone, define a set R of ordered pairs by R = {(p, q): PEP, q E Qp}. For
each r = (p, q) E R, we let xr= X~q = x;.q and Qr = {q}. We may then write
xr=min{x~q:qEQr} and K= UEB:xr(f)~O, rER}, and derive the
definitions and results for the convex cone as a special case of the non­
convex cone K. In particular, we obtain from (3.3) and (3.4), respectively,
the following:
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(3.11 )

13.12)SES',

SE 5',

SES,5',

hOts) = min{ his), his) - sup{x;q(h): pEP,., q E QI'},

=his),

hOts) =min {hiS), inf {~q(t) h(l): PEP" qE Q/}
Also (XU) = P(f) = sup{x;,q(f)/I'x;q',: all p, q}, With these observations
and recalling that Qp may be infinite, we have the following theorem,

THEORDf 3.4 (Duality and Lipschitzian selections for convex K).
Assume that hO= h~ E K f(Jr each f E B\K with /10 defined hy (3,11), Then
hO =!i and

Furthermore, I' = 11 is the maximal hest approximation to I with
I' h --hi :( 2(X(f), Let

., _ {* /1' * I' Q 1J p - sup Xp,qf ,rXp,ql. ' q E p {,

](S)=SUp{.Vp(f): pE P,.},

PEP,

SE 5',

Then }'p is a positil:ely homogeneous sub-additive functional on B with
Ii .YI' ,i = 1 and the following duality holdl':

dCf K) = sup{ Yp(f): pEP} = sup{l(s): SE S'}, IE B\K.

The conclusions of the Lipschitzian selection Theorem 3,3 and Proposi­
tions 3.5 and 3,6 apply under the hypothesis stated there, In particular, (3,9)
hecomes

d(j; K) = (X(f) = Ilf - ni2

= sup {ns) -~ q()t)f(t): p = (A, .1') E P, qE Qp} 2, fE B\.K.

(3.14)

and I(s) - l(s) = 2 max {l(s). O} holds for all .I' E 5',

Proof These results may be easily derived from Theorems 3,1-3,3 and
Propositions 3.4-3,6 using the argument given above. As in Proposition 2.2,
.Yp is sub-additive, Note that the condition of finiteness of Qp assumed in
these results automatically holds, The proof is complete.

We note that by [18, corollary to Theorem 1], (3,13) implies that the
three equivalent conditions (a), (b), and (c) of that theorem hold with
L = {x;q: all p, q},
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Let 5 be topological and w> 0 be a continuous function on 5. Let C
denote the space of continuous functions f on 5 with Ilfll" < 00. We
remark on the applicability of the earlier results when f E C. Since C c B,
the duality (3.6) and Theorem 3.2 hold under the hypothesis of
Theorem 3.1 when f E C. Now assume additionally that J E C whenever
f E C. Since h = hr= f + 'Y.(.f)/w E C, by the above assumption,
/' = Ii E K n C. Consequently, h is the maximal best approximation to f
from K n C in Theorem 3.1. In Theorem 3.3, T: C --+ K n C is Lipschitzian
with IIT(.f)-T(g)ll~cllf-gll for allf,gEC. Similar remarks may be
made on Propositions 3.5 and 3.6 and Theorem 3.4.

4. ApPROXIMATION PROBLEMS

In this section we apply the previous results to approximation problems.
For A c 5 we denote by IA I the cardinality of A.

EXAMPLE 4.1 (Approximation by quasi-convex functions). Let 5 be a
nonempty convex subset of a vector space. A real function f on 5 is said
to be quasi-convex if

f(is + (1 - A) t) ~ max{.f(s ),.f(t)} (4.1 )

holds for all .1', t E 5 and all 0 ~ i. ~ 1 [2, 14]. Without loss of generality we
may assume that .I' # t in (4.1). Let K be the set of all quasi-convex func­
tions in B. It is easy to verify that K is a closed cone which is not convex.
Let co(A) denote the convex hull of A c S. By induction or otherwise, it
may be easily shown that f is quasi-convex if and only if for every nonempty
finite set A c 5 and .I' Eco(A) we have

f(s)~max{.f(t): tEA}. (4.2)

Clearly, we may assume that s ¢ A in (4.2). In that case IA I~ 2.
To place this problem in our earlier format of Section 3, let .r:1 be the set

of all finite subsets of A of 5 with IAI ~2 and T(A)=co(A)\A. It is easy
to verify that 5' = 5\E, where E is the set of extreme points of 5 [14]. For
each U EA, define functions q" on A as follows: q" (t) = 1 if t = u, =0 if tEA
and t#u. Then, if p=(A,s) where sEco(A)\A, we let Qp={q,,:uEA}
and define x;.q and xp by (3.1) and (3.2), respectively. We then have

X;.q(.f)=f(s)- L q)t)f(t)=f(s)- feu),
IE A

Xp (.f) = f(s) - max {f(u): u E A }.
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Clearly, K={kEB:xp(k)~O, pEP}. By Proposition3.2 we obtain
ilx;) = l/w(s) + l/w(u) ifq=qu' and :l xp l!=I/w(s)+max{1/w(u):uEA]
< x:. Since (JP.q = 1 for all p, q we have (J = 1.

To establish the next lemma, note that P, is the set of all p = (A, .1') such
that .I' E co(A) \A. For any hE B, we define hO by (3.3) or (3.4), i.e.,

hO(s) = min {h(s), inf{ max {h(u): U E A } : pEP,} }, .I' E S',

=!I(s), .I'ES\S'. (4.3)

Clearly, !10 ~ h < x. Note that, in general, hO > - ex: is not true even if
hE B. Since we are only interested in real functions, we impose the condi­
tion hO > - x in the next lemma. However, it may be easily shown that hO
satisfies (4.1) even if hO(.I') = - x for somes E S. Similar comments apply to
corresponding lemmas for other examples in this article.

LEMMA 4.1. rr hO defined by (4.3) satisfies hO> -x, then it is quasi­
convex.

Proof For convenience denote hO by k. Let .1', t E S with s #- "
x = ;..1' + (l - J.)t where 0 <;. < 1, and c > O. Note that x cannot be an
extreme point of S and hence XES'. We show that k satisfies
max {k(s), k(t)} ~ k(x), which is (4.1).

Suppose first that .1', t E S'. Then there exist (A, s) E P, and (D,!) E P,
such that

k(s) ~ min{h(s), max{h(u): UE A} - f:},

k(t) ~ min {h( t), max {h( u): U ED} -I:}.

(4.4 )

(4.5)

Suppose that the minimum in each of (4.4) and (4.5) is attained at the
second term on its right-hand side. Then with F= Au D we have

max{k(s), k(t)} ~ max{h(u): U E F} - f, = M, (4.6)

say. Clearly, x E co(F). We now have two cases. If x E F. then
M~ h(x) - c ~ k(x) - c. If, on the other hand, x E co(F)\F, then (F, x) E P<
and M ~ k(x) - <; by the definition of k. Now suppose that the minimum in,
say, (4.4) is attained at the second term on its right-hand side, and in (4.5)
at h(t). Then k( t) ~ h( t) and hence k( 1) = h( t). In this case again (4.6) holds
with F = A u {t}. Now considering the two cases x E F and x ¢ F as above,
we conclude that M ~ k(x) - e. If in (4.4) and (4.5), the minimum is
attained at h(s) and h(t), respectively, then k(s) = h(s) and k(t) = h(t) as
above. If F={s,t}, then clearly, xEco(F)\Fand, hence, (F,X)EP,. We
then have max {k(s), k(l)} = max{ h(u): u E F} ~ k(x). We have shown that
(4.1) holds if .1', 1 E 5'. The remaining cases for which s E S', 1 E S\S' = E,
and s, tEE may be analyzed as above. The proof is complete.
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fEB\K,

A special case of the above lemma occurs when h = hf = f +~(f)/w for
f E B\K. Since by Proposition 3.4, hO = hJ E B for all f E B\K, we conclude
that hO E K and hO = Ii. Consequently, Theorems 3.1 3.3 apply with (J = 1
and c = 2. In particular, using the values of Ix;)I, we obtain from (3.6) the
duality

. { . {W(S) w(t) . }}d(j, K) = !XU) = sup mm ) ) U(s) - j(t)): tEA ,
w(s + w(t

where the supremum is taken over all (A,s) with AES,1 and sEco(A)\A.
If w = 1, then Proposition 3.6 applies and, by (3.9), we have

d(j; K)=ctU)=!JU)=sup{f(s)-max{f(t): tEA} }/2

=If-11/2, fEB\K,

where the supremum is taken as above. Other forms of duality may be
obtained from Theorem 3.2.

An explicit expression for the greatest K-minorant Ii of a bounded func­
tion h on S (i.e., with w = 1) is obtained in [21]. This expression is valid
when hE B, as may be easily shown. See also [23] in this connection. Note
that (4.3) gives another expression for Ii. Rewriting (4.3) we obtain Ii(s) =
inf{ max {h( t)}: tED}}, s E S, where the infimum is taken over all finite
subsets D of S such that IDI ~ I and sEco(D). We now consider a convex
S c Rn and obtain stronger results using the well-known Caratheodory's
Theorem.

PROPOSITION 4.1. If S c R n
, then it suffices to consider A c S with

2~ iA I~ n + 1 in the above analysis, and, in particular, in (4.3).

Proof Clearly, we may take IAI ~n+ I in (4.2) and, hence, in the
definition of X;,q and xp ' Now consider (4.3) and let s E S. For convenience
let Jl=inf{max{h(u):uEA}:pEP.}. Let p=(A,S)EPs ' Since sEco(A),
by Caratheodory's Theorem [15], there exists DcA with IDI ~n+ 1
such that sEco(D). Then (D,S)EP,. and Jl~max{h(u):UED}~

max {h( u): U E A }. It follows that we may consider only those A E ,91 with
IAI ~ n + 1 in (4.3). The proof is complete.

Recall that the space C is defined at the end of Section 3. If S c Rn is
compact and h is in C, then is its greatest K-minorant Ii is in C. A proof
of this is as in [23]. Consequently, the remarks made at the end of
Section 3 are applicable.

EXAMPLE 4.2 (Approximation by convex functions). Let S be a non­
empty convex subset of a vector space. A real function f of S is said to be
convex if

f(i.s + (1 - i.)t) ~ 4(.1') + (1 - J.) f(t)
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holds for all .1', t E S and all 0 < ). < 1. Without loss of generality, let s # t in
the above definition. Let K be the set of all convex functions in B. It is easy
to verify that K is a closed convex cone. By induction or otherwise it may
be easily shown that k is convex if and only if for every nonempty finite set
A c S and every positive real function q on A with L {q( t): tEA} = 1 and
.I'=L{q(t)t: tEA} we have

f(S)~L {q(t)f(t):tEA}.

See, e.g., [14, 15].

LEM~IA 4.2. It suffices to assume that s ¢ A in definition (4.7).

(4.7)

Prool We show that (4.7) with sf. A implies (4.7) with SE A. Assume
that sEA, S=LA q(t)t for some q(t»O for all t in A with LA q(t)= 1. Let
D=A'.{s} and fL=q(S). If q'(t)=q(t)/(l-fL), tED, then q'(t»O and
LDq'(t)=1. Since s=LAq(t)t, a minor rearrangement of terms shows
that s=Lnq'(t)t. Again, since s¢D, we havef(s)~Lf)q'(t)f(t). Now it
is easy to verify that

L q(t) f(t) = (I - fL) L q'(t) f(t) + fLf(s) ~ (I - fL) f(s) + flf(.I') = /(.1').
D

The proof is complete.

Let ,,,/ be the set of all finite subsets A of S with IA I ~ 2. As justified by
Lemma 4.2, we assume that s ¢ A, and hence IA I ~ 2. Let A E .'71. We say
that .I' E S is a positive convex combination of all clements in A if
.I' = LA q(t)t where q(t) > 0 for all tEA and LA q(t) = 1. Let po(A) denote
the set of all positive convex combinations of all clements in A. Then,
clearly po(A) is convex and po(A) c co(A). Let r(A) = po(A )\A. We assert
that S' = S\E, where E is as in Example 4.1. This follows because U E S\E
if and only if there exist s, t E Sand 0 < i. < I with U = i.s + (l - A) t, and
then uEr(A) where A={S,t}E.r4. For each p=(A,s) with sEpo(A)\A,
define Qp to be the set of all functions q on A with q > 0, LA q(t) = I, and
S = LA q( t) t. Recall that Qp may be allowed to be infinite for a convex cone
K. Define x;.q by (3.1). Then, K=UEB:x;.Jn~O for all p,q}. By
Proposition 3.3, we obtain, Ilx;'qll = 1jw(s) + Iql. Again (JP.q = 1 for all p, q
and, hence, (J = I. Note that P,. is the set of all p = (A, .1') with s E po( A) \A.
Recall the remarks preceding Lemma 4.1.

LEMMA 4.3. Ifho defined hy (3.11) or (3.12) satisfies hO > -x, then it
is convex.
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Proof We let k = hO for convenience. Let s, t ES with s =1= t,
x=)s+(I-..1.)t where 0<..1.< I, and G>O. As in Example 4.1, XES'. We
show that ).k(s) + (I - A) k(t) ~ k(x). The various cases to be considered in
this proof are as in Lemma 4.1. We omit similar details while emphasizing
the differences.

Suppose first that s,tES'. Then, by (3.12), there exist p=(A,S)EP,.,
p'=(D,t)EP" qEQp, and q'EQp (p=p') such that S=LAq(U)U,
t = LD q'(u)u, and

k(s) ~ min {h(S), ~ q(u) h(u) - G}'

k(t) ~ min {h(t), ~ q'(u) h(u) - G}.

Suppose first that the minimum in each of the above two inequalities is
attained at the second term on its right-hand side. Let F= Au D and
define r(u) for u E F by

r(u) = ).q(u) + (I - ;.) q'(u), if UEA nD,

= ..1.q(u), if UE A \D,

= (1- ).)q'(u), if uED\A.

Then r > 0, LF r(u) = I, and X = 1:Fr(u)u. Clearly, XE po(F) and we have

).k(s) +(1- A) k(t) ~L r(u) h(u) - G= M,
F

say. If XE po(F) \F, then (F, x) EP x and M ~ k(x) - G by the definition
of k. Now suppose that x EF. Define G = F\ {x}, J1 = r(x), and
r'(u)=r(u)j(I-J1) for uEG. Then r'>O, LGr'(u)=I, and x=LGr'(u)u.
Since XEpO(G)\G, we find that (G,X)EPx and LGr'(u)h(u)~k(x).Now
a minor computation as in Lemma 4.2 combined with h(x) ~ k(x) gives us

L r(u) h(u) = (1 - J1) L r'(u) h(u) + J1h(x) ~ (I - J1) k(x) + J1k(x) = k(x).
F G

Hence M ~ k(x) - G. The remaining cases are as in Lemma 4.1 and their
proof is as given above. The proof is complete.

A special case of the above lemma occurs when h = hj = f + r:t.(f)jw for
f E B\K. By a version of Proposition 3.4 as applied to convex K, we
conclude that hO = h7 E K for all f E B\K, and hence hO = Ii. Consequently



DUALITY IN APPROXIMATION 335

Theorem 3.4 applies with (J = 1 and c = 2. In particular, using the value of
j!x;.qll we obtain from (3.13) the duality

d(f, K) = :x(/)

{
f(S) - LA q(t)f(t) )

=sup :p=(A,S)EP,qEQp~,
l/w(s) + Iql )

fEB'.K. (4.R)

If w = L we obtain from (3.14) the following for f E BX:

dU; K) = xU)

= sup {f(S) - L q(t) f(t): p = (A, .1') E P, q E Qp~' 2 = ! f-- .1;/2. (4.9)
A J

The equality, dU; K) = IJ - .1il/2, appearing in (4.9) is established in
[22,23] by different methods. This equality and [15, Theorem 5.6] with
the substitution f=.1 andj;=f give an alternative proof of (4.9).

An explicit expression for the greatest K-minorant Ii of hE B may be
obtained as below. The epigraph E(h) of h is defined by

Then

£(h)= {(s, p)ESX R: p';':h(s)}.

Ii(s) = inf{p: (.1', p) E co(E(h»}.

(4.10)

For a proof see [15, p. 36]. Another expression for Ii may be based on
(3.12) or [15, Theorem 5.6] as observed above.

We now obtain stronger results for a convex 5 c R",

PRoPOSITIOl" 4.2. II SeW, then it suffices to consider A with
2:(; !AI :(; n + 1 in the abolJe analysis and, in particular, in the definition
(3.11) or (3.12) ofho.

Proof Clearly, we may take iA 1 :(; n + 1 in (4.7) and hence in the
definition of x;.q. Now consider (3.12). Let s E S', PEP" and q E Qp. For
convenience, let 0 = LA q(t) h(t) and p = inf{LAq(t) h(t): PEP" q E Qp}.
We then have p:(;8 and (S,8)EpO(A')cco(A'), where (s,fJ)ER n

-
1 and

A' = {(t, h(t»: tEA} C R"I I. By Caratheodory's Theorem [15, CorolIary
17.1.1], there exists £ c A' with 1£1 :(; n + 2 such that points in £ are
affinely independent and (.1',0) E co(E). Then co(E) is a simplex in Rfll

!.

We now argue as in the proof of [15, Corollary 17.1.3]. Since (.1',8) is In

the simplex, there is a minimal 0':(; e such that (.1',0') is in the same sim­
plex. Then, as in that proof, we may find DcA with IDI :(; n + 1 such that
if D' = {(t, h(t): tED} then (.1', 0') E co(D'). Thus, co(D') is a subsimplex
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of cotE). Then S = LD i.(t)t, 8' = LD ;.(t) h(t) for some I.(t) > 0 and
Ln A(t) = 1. (If I.(t) = 0 for some t, then we may delete that pint from D.)
Since S ¢ A, s rt D. Thus (D, s) E Ps and f.l ~ ()' ~ e. It follows that we may
include only those A in (3.12) such that IA I~ n + 1. The proof is complete.

If S c R" is a polytope and h is in C, then its greatest K-minorant Ii is
in C. (A polytope is a convex hull of a finitely many points and hence, is
compact.) This assertion may be proved as in [23]. Consequently, the
remarks made at the end of Section 3 are applicable here. The problem of
this section on C when n = 1 and w = 1 is considered in [25].

We make a remark on Example 4.1. It may be easily shown that f is
quasi-convex if and only if (4.2) holds for every finite set A c Sand
sEpo(A)\A. Hence, we may define r(A)=po(A)\A and replace co(A) by
pot A) everywhere in that example.

EXAMPLE 4.3 (Approximation by sub-additive functions). Let S = (0, h),
where 0 < b ~ a;, be a real interval. A real function / on S is said to be
sub-additive if

I(s + t) ~/(s) + I(t)

holds for all s, t E S with s + t E S [9, 16]. Let K be the set of all sub­
additive functions in B. It is easy to verify that K is a closed convex cone.
A function q on a subset of S is called positive integral if its range is
positive integers. By induction or otherwise it may be easily shown that I
is sub-additive if and only if for every nonempty finite set A c Sand
positive integral function q on A with s = LA q(t)t E S we have

/(s)~I {q(t)/(t): tEA}.

We may assume that s ¢ A in the above definition. Because if sEA, then
S = LA q( t) t implies that A = {s} and q(s) = 1. Since 0 is sub-additive but
- I is not, we conclude that K is not closed under translation by constant
functions. The remarks following Proposition 3.6 are applicable here.

We say that S E R is a positive integral combination of all elements in A
if S=LAq(t)t for some positive integral function q on A. Let pitA), called
the positive integral hull of A, denote the set of all positive integral com­
binations s of all elements in A such that S E S. This set corresponds to
po(A) in Example 4.2. Let .>1 be the set of all nonempty finite subsets A of
S such that pi(A) \A ~ 0. Note that if A in d is a singleton and equals {t}
then 2t E S, otherwise pi(A) \A = 0. If IA I~ 2, then the sum of elements in
A is in S. Let r(A)=pi(A)\A. We assert that S'=S. To see this for sin
S, let A = {t}, where t = s/2. Then S E r(A) and S' =S. For each
p=(A,S)EP with sEpi(A)\A, define Qp to be the set of all positive
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integral functions q on A such that .I' = LA q( t) t. By the above stated condi­
tion on A, we have Qp =10; since, if IAI ~ 2, then Qp contains the unity
function q = 1 on A, otherwise, if IA I= I, then Qp contains the function
q = 2 on A. Define X;,q by (3.1). Then K = {fE B: X;,q(f) ~O, all p, q}.
Clearly, ()P'i ~ 2 for all p, q and, hence, () ~ 2. It is easy to show that (; = x.

LEMMA 4.4. lfflll defined by (3.11) or (3.12) sati.\jie.l' hll > -X;., then it
is sub-addit il;e.

Proal The proof is similar to that of Lemma 4.3, however, much
simpler. For example, if .1', t and x = .I' + t are in S, and A and Dare
sets corresponding to .I' and t as in Lemma 4.3, then it may be easily seen
that x if F = A u D. Hence x E pi(F) \F and the case x E F does not occur.
We omit further details. The outline of the proof is complete.

Arguing as in Example 4.2, we conclude that the duality in Theorem 3.4
applies. In particular, (4.8) and (4.9) hold with appropriate interpretations
of P and Qp. Since c = (; = 'Xi, the Lipschitzian selection of Theorem 3.4
does not apply.

We now obtain an explicit expression for the greatest K-minorant fi of
hE B. We first introduce some difinitions. A subset H of S x R is called
integral if whenever (.I', i.), (t, 11) E H and .I' + t E S, then (.I' + t, i. + JL) E H.
The next lemma justifies this terminology. Let .tt denote all the integral
subsets H of S x R. Clearly, S x R E Yf. It is easy to see that Yf is closed
under arbitrary intersections. Hence, given C c S x R there exists a smallest
set in y{ containing C, which is the intersection of all the sets in ;it con­
taining C. It is called the integral hull of G and is denoted by in (C). The
results of the next lemma are similar to those in convexity theory [14]; an
integral set corresponds to a convex set and in(C) to the convex hull co(C).

LEMMA 4.5. (a) A subset H of S x R is integral tf and only if the
.f{J//owing Izold\'. For every finite subset {(.I'" i.,): I ~ i ~ n} c}{ and positire
integers In" 1~ i ~ n, if L mis i E S, then (L IniS i, L m)J E H.

(b) Suppose C c S x R. Then (.I', i.) E in(G) if and on!.v tf there exists a
finite subset {(.I'" iJ: I ~ i ~ n} c C and positiue integers In, such that
.I' =L IniS i and i. =L m)i'

Proof The proof follows directly from the definitions as in convexity
theory. Sec, e.g., Theorems Band D of [14, p. 75]. Part (i) may be proved
by induction on nand (ii) by using (i). The outline of the proof is complete.

Recall that the epigraph of a function is defined by (4.10).

LEMMA 4.6. A function f in B is sub-additive if and only if its epigraph
E(f) is integral.
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Proof Let f be sub-additive and (s;, I. i) E E(f), I ~ i ~ n, with
'L mil.; E S for some positive integers mi' Then I'i? f(sJ Now f('L m;s;) ~
L mi f(s;) ~ m)'i' Hence, ('L misi, L m)-;) E E(f) and E(f) E.tt by
Lemma 4.5. Conversely, let E(f) E Yf and s, t E S with s + t E S. Then
(s,f(s)), (t,f(t)) E E(f). Hence (s + t,f(s) + f(1)) E E(f) which implies that
f(s) + /(t)? f(s + t). The proof is complete.

PROPOSITION 4.3. If Ii is the greatest K-minorant of hE B, then

Ii(s)=inf{}-: (s, ;.)Ein(E(h))}, SES.

Proof Let k(s) denote the right-hand side of (4.11). We show that
Ii = k. By definition, Ii EKe B. Since fz ~ h we have E(fz) ~ E(h). By
Lemma 4.6, E(fz)E.rt. Hence E(Fz)=>in(E(h))=>E(h). It follows that
fz ~ k ~ h and, hence, k E B. Since in(E(h)) E Yf, by Lemma 4.6, k is sub­
additive, and hence k E K. By the definition of fz we have k ~ fz and thus
k = Fz. The proof is complete.

Another expression for Fz may be obtained from (3.12).

5. EXTENSIONS AND ApPLICATIONS

In this section, we extend previous results to more complex cones and
indicate applications to approximation problems.

Let K = {fE B: .ip(f) ~ 0, pEP} as in Section 3 with finite Qp for each
PEP, and K'= {fEB:x:.q(f)~O, PEP', qEQ~}, where P' and Q~,

PEP', are index sets and Q~ may be infinite. We are interested in finding
a best approximation from the cone K II K'. The results for this case may
be easily obtained by arguing as for the convex cone in Section 3. Specifi­
cally, hO equals the minimum of the right-hand sides of (3.3) and (3.11)
with the change that Ps and Qp in (3. t I) are respectively replaced by P:
and Q~. Similarly, a(f) equals the maximum of the right-hand sides of
(3.6) and (3.13), again, with P and Qp in (3.13) replaced by P' and Q~,

respectively. Obvious simplifications may be made in both expressions.
Modifications for other results are similar. Now suppose that E c S,
K" = {f E B: f(s) ~ 0, sEE} and approximation is from K II K' II K". We
may then let x:(f)=f(s), SEE. This functional may be considered as a
special case of x:. q where p = (A, s) and q is the zero function on A. As in
Proposition 3.2 we have Ilxill = l/w(s). This functional may be handled by
letting hO(s) ~°for all SEE.

EXAMPLE 5.1. To illustrate an application, we let S be any set with
partial order ~. A partial order on S is a reflexive and transitive relation
on S which is not necessarily anti-symmetric [7]. If s, t E Sand s ~ t but
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si= t then we writes < t. Let E and F be subsets of Sand K be the set of
all I in B satisfying

I(s) ~f(t), 5, t E S and .I' < t. (5.1 )

f(s) ~O, SE E. 1<:' ")\
\ ..I.;' J

I(s)~O, SE F. (5.3 i

The problem is to find a best approximation to f from K. If
G= {SES:S~t for some tEE} and H= {tES:S~t for some sEF}, then
(5.2) and (5.3) are respectively equivalent to

I(s) ~ 0,

f(s)~O,

SEG.

SE H.

(5.4 )

(5.5 )

It is easy to show that K is a closed convex cone. We consider the special
cases of K later. This problem has been considered by different methods in
[19]. We show that it falls in the framework of this article. We also identify
Lipschitzian selections which are not considered in [19]. For the purpose
of analysis, we define K 1 (resp. K2) to be the set of all I in B satisfying (5.1)
and (5.4) (resp. (5.5)). Both K 1 and K 2 are closed convex cones and
K=K1 nK2 •

To apply the results of Section 3 to K 1, let ,rf consist of all the singleton
subsets A = {t} of S such that there exists S E S with .I' < t. Then
let r({t})={SES:S<t}. Define P={({t},S):{t}E,rf, sEr({t})}. If
p=({t},S)EP, then let Qp= {q}, where q(t)= 1. This gives X;,q(f)=
I(s) - f( t), which corresponds to (5.1). As observed before, (5.4) gives the
functional x;(f) = f(s) ~ 0, S E G. By Proposition 3.2, these two functionals
have the norms Ijw(s) + Ijlt'(t) and 1/\1.'(.1') respectively. Similarly, K 2 may
be analyzed by symmetric methods by considering the inequalities
x;." (f) ~ 0 instead of x;'q (f) ~ O. In the following proposition, hO is
obtained by applying (3.11) or (3.12) to K 1 and letting jzO(s) ~°on G.
Similarly, kO is obtained from a symmetric version of (3.11) as applied to
K 2 • Note that (J = 1. We denote the characteristic function of a set D by Zn,

and let 0 . :x = °.(-'Xj ) = 0.

LEMMA 5.1. Let h, k E B and define

hO(s) = min {inf{ h(t): t E S, .I' ~ t}, x( 1 - xds) j},

kO(s)=max{sup{h(t): tES, t~s}, -:;(;;(1- b,(S)j},

SES, (5.6)

SES. (5.7)

If hO > - oc, then hO satisfies (5.1) and (5.4). Similarly, if kO < x;, then kO
satisfies (5.1) and (5.5).
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Proof The proof is straightforward and hence omitted.

Define,

{
W(S) W(t). }

Hdf)=sup ) (.f(S)-j(t)):S,tES,S<t,
W(S + W(t)

O2(.f) = SUp{ W(S) f(s): s E G},

H3 (.f)=sup{ -W(S)f(S):SEH}.

The above three numbers are sup{x*(.f)/lix*ll} corresponding to (5.1),
(5.4). and (5.5) respectively. Let :x(.f)= max{Oi(.f): I ~i~3}, c<df)=
max{Odf),02(.f)}, and C<2(.f)=max{Oj(.f), ()3(.f)}. Note that C<i(.f)
corresponds to Ki as in (3.13), 1 ~ i ~ 2.

PROPOSITION 5.1. Let f E B\K, h = f +'X(.f)/w, and k = f - :x(.f)/w. Let
also hOand kO be defined by (5.6) and (5.7) respectively for these hand k.
Then Ii = hO and Is = kO, where Ii is the greatest K-minorant of h and Is is the
smallest K-majorant ofk. The duality, d(j; K) = :x(.f), holdl', and /i and Is are,
respectively, the maximal and minimal best approximation to f with Is ~ Ii.
For f E K, let h = Is = f Then g E K is a best approximation to fEB if and
only if Is ~ g ~ Ii. If 0 ~;. ~ I, then .f' = i.1i + (1 - J.)1s is a best approxima­
tion to fEB and the operator T;: B -> K defined by T; (.f) =.f' is Lipschit­
zian with c = 2 for all 0 ~ i. ~ I.

Proof Since :x(.f) ~ C< 1 (.f), by Lemma 5.1 and the corollary to Proposi­
tion 3.4 as applied to the convex cone K 1 we conclude that Ii = hO

, where
Ii is the greatest K1-minorant of hand Ih - hll ~ 2:x(.f). Similarly, since
c<(.f) ~:<2 (.f), by Lemma 5.1 and a symmetric version of the corollary
applied to K 2 , we conclude that Is = kO, where Is is the smallest K2-majorant
of f and Ilk - kll ~ 2:x(.f). It is easy to establish by some simple computa­
tions that Is ~ Ii. Hence Is ~ 0 on G and /i ~ 0 on H. It follows that Is, hE K.
Since K c K 1 , we find that Ii is the greatest K-minorant of h. Similarly,
Is is the smallest K-majorant of k. Clearly, d(.f, K l ) ~:Xl (.f) and
d(.f, K2)~:X2(.f). (Using Theorem 3.4 we may show that equalities hold
here.) Hence, by Proposition 2.3, d(j; K) ~ max {d(j; Ki): 1~ i ~ 2 }~ a(.f).
Since f = h - :x(.f)/w, by arguing as in Theorem 3.1, we have III-iii ~
:x(.f). Hence, Ii is a best approximation to f. It is the maximal best
approximation because Ii is the greatestt K-minorant of h. Similarly, Is is
the minimal best approximation to f. The remaining statements follow
easily. Since (J = 1 we have c = 2. The proof is complete.

We now consider special cases of Example 5.1. If S = x {[ai' b;]:
1~ i ~ n} is a rectangle in R n and the partial order on S is the usual order
on Rn

, then the problem is the monotone approximation problem with
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constraints (5.2) and (5.3). Let S = [0, hJ be a real interval. A function f
on S is called star-shaped if f( ':is) ~ ':if(s) for all 0 ~ s ~ hand 0 ~ Ct ~ 1

[1, 11]. It can be easily shown that I is star-shaped if and only if f(O) ~ 0
and f(s)/s~f(t)/t for all O<s~t~h. As shown in [19], this problem is
a special case of Example 5.1.

We now obtain the duality result for the problem of approximation by
quasi-convex functions (Example 4.1) on a real interval I. It has a richer
structure than that of Example 4.1 on W for n ~ 2. See [21] for details.
This problem with It' = 1 on a compact real interval was considered in
[20], however, the arguments for any interval are similar. We use the nota­
tion of [20] applied to an arbitrary I. We consider I with the partial order
P\~ (resp. P:) for each x E I and apply Proposition 5.1 to convex cones
K~- (resp. K;) to obtain the following duality results. Let m(s. t) =
w(s) w( t )/( w(s) + w( t)). Then,

der K;) = 8x = max{sup{m(s, t)(f(t) - f(s)): s. tEl, s ~ t ~ x},

sup{m(s, t)(f(s) - f(t)): s, tEl, X < S ~ t} )

dU; K:) = 8; = max{sup{m(s, t)(f(t) - f(s)): s, tEl, s ~ t < x},

sup{ mrs, tHI(s) - f( t)): s, tEl, x ~ s ~ t} }.

Since K = U{K~- uK; : x E I}, Proposition 2.3 gives us the duality for K as
follows.

dU; K) = inf{min{O" O;}: XE l}. (5.8)

Now, the results for Example 4.1 applied to this special case show that Ii,
the greatest K-minorant, is the maximal best approximation. When IV = 1,
(5.8) is essentially included in [20, Theorem 4.2]. If fEe, then 8x =0:,
and the duality takes a simpler form. This case with w = 1 is considered
in [24].
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