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Duality relationships in finding a best approximation from & nonconvex cone in
a normed linear space in general, and in the space of bounded functions in
particular, are investigated. The cone and the dual problems are defined in terms
of positively homogencous super-additive functionals on the space. Conditions are
developed on the cone so that the duality gap between a pair of primal and dual
problems does not exist. In addition. Lipschitz continuous selections of the metric
projection are identified. The results are specialized to a convex cone. Applications
are indicated to approximation problems. 1 1991 Academic Press. Inc.

1. INTRODUCTION

Duality in a normed linear space X refers to a relationship between a
pair of extremum problems a primal problem on X and a dual problem
on the dual space X* of continuous linear functionals on X, or more
generally, a bigger space X of nonlinear functionals on X. Given a noncon-
vex (i.e., not necessarily convex) conc K < X, which is defined by positively
homogeneous super-additive functionals in X, the primal problem is to find
a best approximation to f in X' K from K. In this article, dual problems
corresponding to this primal arc defined in terms of functional in X* and
X. Some basic duality results in X arc cstablished to obtain lower bounds
on d(f, K). When X is the spacc of bounded functions with weighted
uniform norm, conditions arc developed on K so that the “duality gap”
between a pair of primal and dual problems does not exist; i.e., the optimal
values of the two problems are equal. In addition, a best approximation f”
to each f is identified so that the selection operator mapping f to f’
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316 VASANT A. UBHAYA

is Lipschitzian. Some results are derived for the space of continuous
functions. Examples from approximation theory illustrating the results are
given.

We consider a rcal normed linear space X with norm |-} and its
real dual X* which 1s a Banach space with the norm |x*|=
sup{|x*(f): fe X, Il <1}, x*e X*. A nonempty subset K of X is called
a cone (with vertex 0) if if € K whenever fe K and i >0. A convex cone
is a cone which is convex. It is easy to verify that a cone K is convex if and
only if f+geK whenever f,geK If K is a cone, then d(f, K}=
inf{|f— gl: ge K} <| [, since 0 K. To motivate the discussion, we first
state some basic duality results for a convex cone K. Duality in approxima-
tion has been investigated in detail in [3]. The dual. polar. or conjugate
cone K® of K is defined by

K= {x*eX*: x*(f)<0, feK}.

It is known that K° is convex and weak* closed. A well known duality
result is

d(f, Ky =max{x*(f)/lix*|: x*e K°\{0*}}, feX\K,

where 0* is the zero functional. (See, e.g., [3, Corollary 5.3(a)]; see also
[8.12. 17, 18] and other references given there.) Suppose now that L X'*
and L # {0*}. Define a convex cone K by

K={feX:x*(f)<0,x*ecL}.

Then K°=¢c(L) and K # X, where TS(L) is the smallest weak* closed
convex cone containing L. In particular, L and its convex hull co(L) are
in K® and, hence,

d(f. K)zsup{x*(f)/l.x*|: x*eco(L)\{0*}}
Zsup{x*(f)/x*: x*e LA{0*}}, feX\K. (1.1)

When f is fixed, the first term d(f, K)=inf{[f— g|': g€ K} in (1.1) defincs
a primal problem on X, and the middle and the last terms define two dual
problems on the space X*. In [ 18], we investigated necessary and sufficient
conditions so that equalities hold throughout (1.1). When equalities hold.
d(f, K) may be easily computed from L using the last term,

Suppose now that L < X is a nonempty sct of real nonlinear functionals
on X. We define a cone K by

K={feX:2(f)<0,xeL}.
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We assume that each X in L is a pointwise infimum of a set of functionals
in X* This constraint is motivated by applications to approximation
probiems. Then cach x is positively homogeneous and super-additive and,
hence, concave (sce Section 2). Clearly, K is not necessarily convex. In
Section 2, analogous to (1.1), we develop dual problems on X* and X
which give lower bounds on d(f, K). In Section 3, we apply the results to the
space of bounded functions B with weighted uniform norm and obtain con-
ditions on K so that the duality gaps do not exist. We identify Lipschitzian
selection operators T mapping f to one of its best approximations /' so
that [ " —h'| <c¢ | f—h| for some ¢ >0 and ali f, #e B. We also specialize
the treatment to a convex cone and the space C of continuous functions.
In Sections 4 and 5, we illustrate the results for nonconvex and convex
cones by examples of approximation problems. In Section 5 we consider
more complex cones. Our previous work on Lipschitzian selections
[22, 237 required that K be closed under translation by constant functions
and that the uniform norm have unity weight function. Such constraints
arc not required in this article. In particular, the convex cone of
sub-additive functions in Example 4.3 is not closed under translation by
constant functions. For additional work on continuous and Lipschitz
continuous selections in approximation see [4, S, 6, 10, 137].

2. DUALITY IN NORMED LINEAR SPACES

In this section we derive lower bounds on d4(f, K).

A real-valued nonlinear functional ¥ on X is said to be positively
homogeneous if £(Af)=/ix(f) for all fin X and all 21 >0. Hence £(0)=0.
Let |1} =sup{|2(f)|: fe X, |f] <1}. By positive homogeneity we have
[X(/Y < X U fY for all £ in X. We say £ is bounded if | 2] < xc. We call
X super-additive if X(f+ g)=2(f) + £(g) for all /, gin X.

PropoSITION 2.1, Suppose that x is a positively homogeneous super-
additive functional on X.
(a) The following holds for all f, g in X and all 0 </ < 1.
(1) XA+ —2)g)zi(f)+ (1 —2)x(g); ie., X is concave on X.
(i) X(—=f)< —X(f)
(i) 1X()— K@) <max{—3(f—g), —X(g— N} <= If - gl
(b)Y The following three conditions are equivalent.
(i)
(11) is continuous everywhere.
(1i1) X is bounded.

is continuous at Q.

N

s



318 VASANT A. UBHAYA

Proof. To prove (a), wec observe that (i) follows by positive
homogeneity and super-additivity. Again, by super-additivity, we have
0=x(0)=x(f)+ X(—f), which gives (i1). Writing f=(f—g)+ g, wc
obtain (/)= X(f— g)+ %(g). Interchanging f and g we obtain (iii). To
show (b) we note that by positive homogeneity, if X is continuous at 0,
then it is bounded. The rest of (b) follows from (a)(iii). The proof is
complete.

We remark that if X denotes the set of all positively homogeneous
bounded functionals on X, then X is a linear subspace with norm ||,
and X*c X.

Let P and Q,, pe P, be index sets. For each pin P, let {x%,:qeQ,} be
a set of nonzero functionals in X* Definc the pointwise infimum of

{x}q:q} by
%,=inf{x¥,:qeQ,}, peP, (2.1
and

K={keX:x,(k)<0, peP}. 2.2)

Clearly, K is a cone which is not necessarily convex. We then havc the
following.

PrROPOSITION 2.2. (a) For euach p in P, X, is positively homogeneous and
super-additive with

1%, =sup{ |x¥,l:9€Q,}, peP. (2.3)

All properties stated in Proposition 2.1 apply to X,,.

(b) IfK,,={keX:x} (k)<O0}, then K, is a convex cone for all
pq. If Q, is finite for all peP, then K=N{U{K,, q€Q,}: pe P},
i X,ll < oc for all pe P and K is closed.

Proof. (a) Clearly, x, is positively homogeneous. To show super-
additivity, let pe P and f, geX. Then x} (f+g)=x},(f)+x},(g)=>
£,(/)+%,(g). Hence %,(f + 8)> %, (/) + %,(g).

To establish (2.3), let >0, pe P, and c=sup,{|lx} [} <. If O<pu<e,
then there exists g€ Q, such that | x} || > u. Again, therc exists g in X" with
lgil=1 such that x} (g)< —x; Il +& Hence, £,(g)< —|x¥ [+e It
follows that |[X,[|> —X,(g)> x| —e>u—e which gives |x,|>c.
If ¢=cc then (2.3) is shown to hold. Otherwise, let fe X with | f| =1.
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Then £,(/)<x}, (f)<lx},|<c Also there exists geQ, such that
xx ) —rsf,,(f) Hence,

=X, ()< =x}, (1+e<xf [ +e<c+e

We conclude that |x,(f)| <c+¢ and |£,i <c Thus (2.3) holds.

(b) If Q, is finite then, by (2.3), | £,| < x. By Proposition 2.1(b), £,
is continuous for each p and, hence, K is closed. The remaining assertion
about K follows immediately.

The proof is complete.

ProposITION 2.3. Let K;, i€l, be an arbitrary collection of nonempty
subsets of X and [ e X. Then the following holds.

() dif, U, K)=inf{d(/; K)): ie ],
(b) d(f, ), K,)>supld(f, K,): ie ).

Proof. To prove (a), denote its right-hand side by p, let K'={J K|, and
let é>0. Then there cxists some je/ such that d(f, K;)<p+¢/2. Again
there exists ke K; such that || f—k| <d(f, K;)+&e2<p+e Since ke K’
we have d(f, K')< | f—k|, which gives d(f, K'}<p. Now, if ke K’ then
ke K, for some i, and | f—k| =d(f, K;)=p. Hence d(f, K'Y= p and (a) is
established. The proof for (b) is simpler. The proof is complete.

THroREM 2.1 {Duality bounds for nonconvex cone K). Assume Q, is
finite for each pe P. Let f € X and define
a(f)=sup{inf{x} (f)VIx},[:9€Q,}: pe P},
B(f)=sup{x,(f)/|%,l:pe P}

Then d(f, K) = a(f) = B(f) for f€ X K. If for each pe P, ||X,]i = |x} i for
all g€ Q,, then d(f, K)a(f) = B(f) for f€ XK.

We first establish the following lemma.

LeMMA 2.1, Assume Q, is finite for each pe P. Then the following are
equivalent.

(a) feX K.
(b) 2(f)>0.
(c) p(f)>0.

040364 72-6
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Proof. By Proposition 2.2(b), [|X,|| <o for all pe P. Hence, by the
definition of K, (a) and (c) are equivalent. Now (b) holds if and only if
x¥,(f)>0 for some pe P and all ge Q, which is equivalent to (c). The
proof is complete.

Proof of Theorem2.1. We first cstablish that x(f) = B(f), f€ X\K. By
Lemma 2.1, it suffices to consider pe P with £,(f)>0. For such p, if
geQ,, we have x¥ ()= %,(/)>0. Since, by (2.3), lix},Il < {%,] < oz, we
find that x¥ (f)/lix} i = X,(f)/i%£,il, which establishes a(f)>= B(f).

To show d(f, K)=x(f), let keK,, which is defined in Proposi-
tion 2.2(b). Then x,’{q(k)<0 Hence, | x¥ || |f -kl Zx},(f—k)=x} (/)
which gives | f—kll=x} (f)Ixy,l =¢,,, say. Thus, d(f, K, )>c,,
(This inequality also follows from (1.1) by letting L be the singleton set
{ +J-) We now use Proposition 23.1fK,=U{K,,:9€Q,} then we have

fK)—mmq{df Y} =min, {c, }. Since K = N{K,: pe P}, we find
that d(f, K) > sup, {d fK )} =a(f).

Finally to show a(f) [3(/ under the stated condition ||x,{ = [lx}, |, we
obtain £, (f)/|I%,]l =inf{x}  (f)/x},I: geQ,} for each p from the defini-
tion of %,. It follows that a(f) = B(f). The proof is complete.

3. DUALITY AND LIPSCHITZIAN SELECTIONS IN UNIFORM APPROXIMATION

In this section, we consider the problem of uniform approximation and
obtain conditions under which d(f, K)=a(f) for fe€ X\K in Theorem 2.1.
We also identify Lipschitzian selections as defined in Section 1. We con-
sider two cases when K is a nonconvex cone and a convex cone. In later
sections we apply the results to problems in approximation theory. The
following example will show that, in general, d(f, K) > B(f) for f'e X\K,
however, under certain conditions we will establish that d(f, K)=
a(f)=B(f). Let X be the rcal line and x¥(f}=2f, xk (/) =/, where fe X,
and X =min{x}, x}%}. Then K= (— o0, 0] %= lxk) =2 and x&| =1.
If /=1, then 1=d(f, K)=a(f)>B(f)=

Let S be any set and 0 < w(s) < oc for all s in S be a weight function on
S. Let B denote the set of all real functions f on S such that || f|| =1, =
sup{w(s) |f(s)| :s€S}<oc. Then B is a Banach space with norm |-|,
which is called the weighted uniform norm. Note that an f in B is not
necessarily bounded on S. Let &/ be the set consisting of certain nonempty
countable subsets of S. Suppose there is a mapping t: ./ — 25\{J} such
that t(4)n A= J for all Ae /. Let S’ denote | {t(4): A€}, ie., all the
elements of S in the range of 7. For 4 in ., let g=¢, denote a non-
ncgative function on A such that |g] =3 {q(r)/w(t):te A} < 0. Let
P={(A,s):Ae o, set(4)} and Q,, for cach p=(4,s)e P, be a.set of
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above defined functions ¢ on 4 with jg| < oc. We define lincar functionals
indexed by p=(4,s)e P and g€ Q, as follows.

¥ (N =f)=3 {q(0) fli): te A} (3.1)

We usc the notation of Section 2 with X'= B and define £, and K by (2.1)
and (2.2). respectively. Clearly, X, may be written as

Xp(f)=1(s)—sup { 2 q) f(:qe Q,,} (32)

VicA

LemMa 3.1, Suppose that G < K is nonempty, and for all g in G, g<J
holds for some [ in B. Let k(s)=sup{g(s): geG}, seS. Then ke K.

Proof. Clearly, ke B. Now, for all g in G we have g<k and X,(g)<0
for all pe P. Suppose se S'". Then, for any p=(4,s)e P, g€ Q,, and geG.
it follows from (3.2) by the nonnegativity of ¢ that

g(s) <sup {Z q(r)g(t)}ssup I3 a kol

q 7] )

Hence k(s) <sup, {3 (1) k(¢)} which is £,(k)<0. Thus 4 € K. The proof is
complete.

Next we establish the existence of a best approximation when @, is finite
for each p. A best approxmation /' of f is called the maximai best
approximation if f* > g for all best approximations g to f.

PrRoOPOSITION 3.1. Suppose that Q, is finite for each p. Then, every f in
B has a maximal best approximation from K.

Proof. For convenience let d(f,K)=p, u=/f-p/w, and v=
I+ {p+1)/w. Clearly, u,ve B. Now for each n, there exists f,e K such
that || f—f<p+1l/n=p,, say. Then f—p,/w<f,<f+p,/w<r since
p,<p+1. Define g,=sup{f,:m>n}. Then g,>g,,,, and, by
Lemma 3.1, g,¢K Since g,>= 71, for all m=n and p,_,<p,, we have
f—pmin<f < 2. <f+p,/wfor all m=n. Letting m — oc. we obtain

u=f—pw<g,<f+p,ws<y,

for all n. If g(s)=Ilim g,(s), s€ S, then we conclude that f--p/w< g<
f+ p/w which is || f— g| < p. We show that ge K; this will establish that
g is a best approximation. As shown above, we have u<g,<v. Now
S g ()] < lull 1gl < oo and ¥, q(1) [o(0)l < Yo'l |g] < oc. Hence, by the
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bounded convergence theorem [7], >, q(¢) £.(8) = > 4 q(t) g(t) as n — o,
We conclude that x* (g,)— x},(g) for all ge Q,. Since Q, is finite we
have %,(g,)— %,(g). Again since g,e K we have X,(g,) <0 and, hence,
%,(g)<0 for all p. Thus ge K and is a best approximation. Now if G is
the set of all best approximations, then g< f+ p/w for all g in G. Since
f+p/we B, by Lemma 3.1, f"(s)=sup{g(s): geG} is in K. It is easy to
verify that f” is a best approximation. Clearly, it is the maximal best
approximation. The proof is complete.

PrROPOSITION 3.2. Let p=(A,s)and qeQ,.
(@) lx¥, = 1/w(s)+ X {gryw(t): 1€ A} =1/w(s) +ql.
(b) 1%l = 1/w(s)+sup{lql: g€ Q,} =sup{llx* li: g€ Q,}.

Proof. (a) If feB and |f| <1, then |f(u)| < 1/w(u) for all u in S.
Hence,

X3 OIS+ X q(e) | A(D] < 1/w(s) + 3 q(e)/w(r) = 1/w(s) + Iql.

Now, define g on S by g(s)= —1/w(s), g(¢t)=1/w(z) for ¢t in 4, and 0
elsewhere. Since seS\A, this is possible. Clearly, |g|l=1. Then
xy,(g)=1/w(s)+|q| and the result follows.

(b) This follows at once from (a) and (2.3).
The proof is complete.

For each f in B, let K,={keK:k<f} and f(s)=sup{k(s):keK,},
seS. If feK, then f is called the greatest K-minorant of f. Similarly,
letting K;={ke K: k> f}, define f(s)=inf{k(s): ke K/}, seS. If feK, it
is called the smallest K-majorant of f.

PROPOSITION 3.3. Suppose f e B. Then the following (a)-(c) are equiva-
lent and imply (d).

(a) K+
(b) fek
(c) f(s)> —co for all sin S.

(d) f<fand f(s)=f(s)ifse S\S'. Hence, if S;= {s€ S: f(s)> f(s)},
then S, §'.

Proof. 1If (a) holds then by Lemma 3.1 with G = K, we have that fe K,
which is (b). If (b) holds, then feB and (c) holds. If K,= (¥, then
f=—o. Hence (c) implics (a). If (b) holds then define g on S by
g(s)=f(s) for se §’, and g(s) = f(s), otherwise. Then g is in B and satisfies
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X,(g)<0 for all p. Thus geK, and, consequently, g< /[ This gives
F(s)=f(s) for se $3S’ which is (d). The proof is complete.

We let P,={p=(4,s): pe P}, se S One may easily verify that P #
for all sin §’ and P=J{P,:5€S'}. For he B define 4° by

h°(s)=min{h(s), h(s) —sup{x,(h): pe P }}, ses,
= h(s), seSHS' (3.3

Substituting for £, from (3.2) in (3.3) we obtain
£%(s) = min {h(s), inf{sup {Z g(t) h(t): qe Q,,} pe PS}}, seS. (3.4)
A

Note that if k, he B and k < h, then (3.4) shows that k° <4°. Moreover, if
k € K, then %,(k) <0 for all p, and hence by (3.3), we have k®=k. For each
f in B\K, dcﬁne he=f+a(f)/w, where x(f) is defined in Theorem 2.1.
Then |Ad <[fl +2(f)<|fi+d(f, K) and he B. This h, will play an
important role in the following analysis. Letting 4 = /. for convenience, we
define h° =h7 by (3.3).

PROPOSITION 3.4.  Assume that Q, is finite for each pe P. If f € B\K then
B =h)e B with |h—h°| <2a(f). If h°c K, then h°=h, where h is the
greatest K-minorant of h=h,. Consequently, |h— hi| <2a(f) and

h(s) =min {h(s), inf {max {Z g(t) h(t): ge Qp}: pe P,Y}}, seS
= h(s), seS\S". (3.5)

CORCLLARY. [f h=f+ pjw, where 2(f)<p< o and h° is defined by
(3.3) for this h, then the above proposition holds with a(f), h,, and h_(,) there
replaced respectively by p, h, and h°.

Proof. Since @, is finite, by Proposition 2.2(b), we have | £,| < oc. For
convenience, let 8 =a(f). Also let se S" and pe P,. Then, by the definition
of 0, we have 0> min{x}, (f)/llx*ql' g€ Q,}. Hence, there exists ge Q,
such that 6> x% (f)/llx},|, which gives 8 ||x} ! > x¥ ,(f). By substituting
f=h—6/w we obtain

O(llxx Il + xX, (1/w)) = x%, (h).

Again, |x}¥ | =1/w(s)+|q] by Proposition32(a), and x; (l/w)=
1/w(s) — |q| as may be easily verified. Hence 26/w(s) = x . (h), which gives
26/w(s)=%,(h) for all peP, Then by (3.3) we have h(s)>h°(.s‘)>

h(s)—20/w(s). Also, h°(s) = h(s) if se S\S". Thus h°e B with [jh— A% < 20.
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We now show that if ke K and k <A then k < 4° Since, by assumption
h°e K, this will establish that #°= /. Let se S" and p= (4, s)e P,. Then, by
(3.2), there exists ge @, such that

2p(k)=k(s) =3 q(t) k(1).

Also,

Hence,

X, (h)—%,(k) < (h—k)(s) =, q(2)(h(1) = k(1)).
A
Since k<h and %,(k)<0 as ke K, we obtain from the above inequality
that k(s) <h(s)— X,(h) for all pe P,. Now, since k <h, we conclude from
(3.3) that k(s)<h%(s), seS’. For seS\S’, we have k(s)<h(s)=h"(s).
Hence k<h" and #°="h as asserted. From (3.4) we obtain (3.5). The
corollary may be proved exactly as above. The proof is complete.

The above proposition is fundamental in establishing our next theorem.

THEOREM 3.1 (Duality for nonconvex K). Assume that Q, is finite for
each pe P and h° = h)e K for each f € B\K. Then

d(f, K)y=o(f)=sup{min{x} (f)/[x},l:9€Q,}: peP}, feB\K
(3.6)

Furthermore, ['=h is the maximal best approximation to f with |h—h| <

2a(f).

COROLLARY. Under the hypothesis of the theorem, if for each p in P,
1%, =Ilxx,I holds for all g€ Q,, then

df, K)=a(f)=B(f), SfeX\K

Proof. Let 8 =ux(f) for convenience. By Proposition 3.4 we have 4°= 4
and |}4 — h|| < 26. This gives & — h < 20/w. Now since f =k — 6/w, we obtain
f—h=h—h—0/w<0/w. Again, since h>h, we have f—h> —6/w. Thus
| f— Al <6. Now, he K, and by Theorem 2.1, d(f, K) > 0. We conclude that
d(f, K)=\|f—hlt=0.

If g is any best approximation to f then |f— gl =0 and hence,
f—0/w< g< f+0/w. Since ge K and 4 is the greatest K-minorant of , we
have g<h and 4 is the maximal best approximation.
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The corollary follows immediately since, by Theorem 2.1, x(f)=B(/)
under the condition on the norms. The proof is complete.

We remark that the condition, #° = h}e K for cach f € B\K, of the above
theorem may be replaced by the stronger condition, h°¢e K for each %€ 8.
Note that (3.6) allows us to compute d(f, K) easily using the defining
functionals x} , of the cone K.

THEOREM 3.2 (Alternative forms of duality for nonconvex K). Suppose
that the hypothesis of Theorem 3.1 holds. Let e B\K and

"

¥,=min{x¥ /ix¥ l:9eQ,}. pe P,
F(s)y=sup{5,(f): peP,}, sesS’.

Then y, is a positively homogeneous super-additive functional on B with
[ 3,0l =1 and the following duality holds:

d(f. K)=sup{§,(f): pe P} =sup{f(s):seS'}, feB\K

Proof. Define y}k, =x}./lix¥ . Then ypql =1 for all p,g and
J,=min{y¥ :g}. As in Proposition 2.2, y",, i1s positively homogeneous
super-additive and by (2.3), 7,1 = 1. The duality is simply a restatement
of Theorem 3.1. The proof is complete.

We now investigate Lipschitzian selections. For each p= (4, s)e P and
ge@,. let g, =3 {q(1): 1€ A}. Define
_supio‘pq peP, qup)

THEOREM 3.3 (Lipschitzian sclections for nonconvex K). Suppose that
the hypothesis of Theorem 3.1 holds and o < x.. Let [ be the maximal best
approximation to f in B. (If fe K then "= f) Then the selection operator
T: B— K, defined by T(f)= f", is Lipschitzian satisfying |T(f)— T(g)ll <
clif—g\l for all f, g€ B, where ¢ =2max{1,0}.

Proof. First assume that f, ge B\K. Let ¢>0, h=f+a(f)/w, and
k=g+a(g)/w. Then by Theorem 3.1 we have f"=hand g’ =k Let se S,,
where S, is as defined in Proposition 3.3(d), and &' = ¢/w(s). By (3.5) we have

k(s)= inf{max {Z g(t) k(t): qe Qp}: pe P_,}.
A
Hence. there exists pe P, such that

k(s) > max {Eq ) k(1): qu,,}—a’. (3.7)
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Then, by (3.5) we have

h(s) < max {Zq(z)h(t):qu,,}. (3.8)

A
Again, there exists geQ, such that A(s)<Y g(1) A(2). Then f(v)>
> q(ty k(r)—¢'. We obtain, therefore, A(s)—k(s) <Y g{r)(Alt (t+e.

Multiplying both sides by w(s) we have

w(s)(h(s)—k(s))<o,,lh—k +e<olh—ki +e¢,

for all seS,. If se S\S,, then by Proposition 3.3(d), we have (s} = k(s).
Since A(s)< h(s) we obtain w(s)(A(s)—k(s))<h—ki. We then have
w(s)(h(s)—k(s))<c' |h—k| +¢ for all sin S where ¢’ = ¢;2. Interchanging
h and k we obtain |hA—k| <c' |h— k| By Theorem 3.1, «( /) = 4(f, K) and
2(g)=4d(g, K), and also |d(f, K)— Ky <|f—gl, by a well known
result. We conclude that

| h—kl <If—gll+12(f)—2(g)l <21/~ gl

whence we have |A—ki| <c |f—g].

Now suppose that f e K and ge B\K. Then we let k = g+ a( g) as before
and h=h=f (ie., consider x(f)=0). Suppose s€S,. Then (3.7) holds as
before. Since f€ K, we find that £,(f) <0 for p = (4. s), where s and 4 are
as in (3.7). This is equivalent to (3.8) with A=h=f The rest of the
argument may be carried out as above to show that w(s){(A(s)—&(s)) <
o [lh—k|. Now k(s) < k(s) and A(s) = h(s) = f(s). Hence, w(s)(k(s) — A(s)) <
[iA—k|. Thus, w(s) |A(s)—k(s)| <c¢' |h—k: forall seS,. IfseS\S,, then
we argue as above, and noting that x(g} < i f — gfi, we complete the proof
of |h—kli<c|f—gll. If f,geK then the result holds. The proof is
complete.

We now consider special cases of K. Define u(w)=sup{w(s):se S} and
Z(w)=inf{w(s):se S}.

LEMMA 3.2. Assume that 6, ,=1 for all pe P and qe Q,,.
(a) If p(w)< oo, then all constant functions are in K and K is closed
under translation by these functions.

(b) If O<a(w)<<u(w)< o, then K has properties as stated in (a).
feK forall fin B, and |%,| <2/A(w)< x for all p in P.

() If w=1, then conclusions of (a) and (b) hold, and [|%,h=
lxy =2 foral pePandgeQ,.
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Proof. (a) The condition u(w)< oc shows that all constant functions
are in B. Since 0, , = 1, substitution in (3.2) verifies that X,(f + a)=%,{f)
for all real « and fe B. Hence, K is translation-invariant as stated. Since
0 e K. all constant functions are in K.

(b) We have /= —||fli/w= —Ilfli/2(w) = p, say. Since u(w)< o, by
(a) we have that pe K and hence K # . By Proposition 3.3, fe K. Also,
by Proposition 3.2, [1x,| <2/A(w) for all p.
{c) This follows from Proposition 3.2.
The proof 1s complete.

Next we apply Theorems 3.1-3.3 to nonconvex K under special condi-
tions.

ProrosITION 3.5, Suppose that the hypothesis of Theorem 3.1 holds. Also
assume that u(w)<oc and o, ,=1 for all pe P and q€ Q,. Then the conclu-
sions of Theorems 3.1-3.3 hold with |h—h| =2a(f) and ¢ =2.

Proof. By Theorem 3.1, i f — A| =a(f) =0, say. By Lemma 3.2(a), X is
transldtion invariant as stated there. Hence, given ¢ >0, there exists s€ .S
with w(s)(f(s) — h(s)) >0 —e. Now h=f+ 0/w and hence

w(s)(h(s)=h(s)) = ws)(f(s)—h(s)) + 6>20—«.
Hence, |/ —Aj=2a(f). Clearly, 6 =1 and, hence, ¢=2. The proof is
complete.
Recall that §, and f(s) are defined in Theorem 3.2.

PROPOSITION 3.6. Suppose that the hypothesis of Theorem 3.1 holds.
Suppose also that w=1 and ¢,,=1 for all pe P and q€ Q,. Then,

dif. Ky=ay=p(f)=1/- 12
=sup {f(s)—max {Z q(t)f(t):qup}};-;L feB\K, (3.9)

N

where f is the greatest K-minorant of [ and the supremum is taken over ail
p=(A4,s)eP. Also, f(s)— f(s)=2 max{f(s). 0} for all s S".

Proof. Since w=1 we have A(w)=pu(w)=1. Then, Lemma 3.2(c)
applies showing that K is closed under translation by constant functions,
feKforall fin B, and |%,]| = lx},| =2 for all p, g. Since h=f+a(f). by
translation-invariance we have A= /f+a(f). Hence, |h—FAl=|f~ 1.
By Proposition 3.5 we find that |f— f|| ={h—#hl =2x(f). Since the



328 VASANT A. UBHAYA

hypothesis of the corollary to Theorem 3.1 is satisfied, (3.9) follows. The
last equality in (3.9) is obtained by substitution in B(f) for %, from
(3.2). To show f(s)— f(s)=2max{f(s),0}, we note that y,=x,/2 and
hence f(s)=sup{£,(f): peP,}/2. Since h=f+u(f) and h=f+a(f),
substituting for 4 and 4 in (3.5) we observe that (3.5) holds when 4 and A
there are replaced by f and f. This latter equation may easily be shown to
be equivalent to f(s)=min{f(s), f(s)——2](s)} from which the required
result follows. The proof is complete.

We remark that the equality d(f, K)=|f— f|l/2 is obtained in [22, 23]
under different assumptions. To make an observation on translation by
constant functions considered in Lemma 3.2 and Propositions 3.5 and 3.6,
let 0 </ <o be a function on S. Instead of (3.1) define x}%, by

Xx ()= f(8) i) = X {g()iin) f(1): te 4},

where, for all p=(4,s) and ¢e Q,, we have o¢,, =1 and
> 4 q()/(A(2) w(r)) < oo. Then the cone K, defined as before with these new
functionals, will be closed under translation by functions of the form a4,
where « is real. Considering a new weight function w’' = Aiw, norm || f1,'=
sup{w'(s) [f(s)l:s€ S}, space B ={f/i:feB}, cone K'={k/r:keK},
one may show that the above problem of finding a best approximation to
fe B from K relative to |-l is equivalent to finding a best approximation
to f'=f/7.e B’ from K’ relative to [,-|". Note that | f|| = f"|". Clearly, X’
is closed under translation by constant functions, since it is defined, as
before, by functionals of the form (3.1) with ¢, ,=1. Thus sometimes K
may be transformd to K’ which is translation-invariant by constant func-
tions. However, the convex conc K of sub-additive functions in Example 4.3
cannot be so transformed to K.

We now consider the case when K is a convex cone. Let x} , be given by
(3.1) and define K by

K={keB:x} (k)<0,peP,qeQ,}, (3.10)

where Q,, pe P, is not necessarily finite. It is easy to verify that K is a
closed convex cone and K={\{K, :peP, qeQ,}, where K, is as in
Proposition 2.2. To place this problem in our earlier format for a noncon-
vex cone, define a set R of ordered pairs by R={(p, g): pe P,¢g€Q,}. For
each r=(p,q)eR, welet £, =x¥,=x}, and Q,= {q}. We may then write
%,=min{x¥,:geQ,} and K={feB:%,(f)<0, reR}, and derive the
definitions and results for the convex cone as a special case of the non-
convex cone K. In particular, we obtain from (3.3) and (3.4), respectively,
the following:
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h°(s)=min{A(s), h(s) —sup{x¥ ,(h): pe P,,q€ 0,}. ses’,
= his), se 8.5 (3.1

ho(s):min{ (s), mf{Zq ) h(1): pc—P.‘.,qul,}, ses. (3.12)

Also a(f)=B(f)=sup{x} (f)/Ix}k,': all p,q}. With thesc observations
and recalling that Q, may bc infinite, we have the following theorem.

THEOREM 3.4 (Duality and Lipschitzian sclections for convex X).
Assume that h®=hle K for each fe B\K with h° defined by (3.11). Then
W =h and

difs K)y=a(f)=sup{x} (/)ix} :peP.qeQ,}. {3.13}

Furthermore, f'=h is the maximal best approximation to [ with
fh--h|<2x(f). Let

Yy=sup{x} /ixk l:geQ,}, peP,

J(s)y=sup{F,(f): pe P}, ses’.

Then 3, is a positively homogeneous sub-additive functional on B with
[ ¥,0 =1 and the following duality holds:

d(f. K)=sup{y,(f): peP}= sup{f(s):s€8"}, feBK

The conclusions of the Lipschitzian selection Theorem 3.3 and Proposi-
tions 3.5 and 3.6 apply under the hypothesis stated there. In particular, (3.9)
becomes

d(f. Ky=2(f)=if~-fl12

= sup { Z gON f(): p=(A,5)e P, ge Q,,};-‘:l feB\K,
| (3.14)
and f(s)— f(s)=2max{f(s). 0} holds for all s€S'.

Proof. These resuits may be easily derived from Theorems 3.1-3.3 and
Propositions 3.4-3.6 using the argument given above. As in Proposition 2.2,
¥, is sub-additive. Note that the condition of finiteness of Q, assumed in
these results automatically holds. The proof is complete.

We note that by [18, corollary to Theorem 17, (3.13) implies that the
three equivalent conditions (a), (b), and (c) of that thcorem hold with

L:{ /1([ a]l p’qi
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Let S be topological and w>0 be a continuous function on S. Let C
denote the space of continuous functions f on § with | f]|, <. We
remark on the applicability of the earlier results when fe C. Since C < B,
the duality (3.6) and Theorem 3.2 hold under the hypothesis of
Theorem 3.1 when fe C. Now assume additionally that fe C whenever
feC. Since h=h,=f+a(f)/weC, by the above assumption,
f'=he Kn C. Consequently, & is the maximal best approximation to f
from K~ C in Theorem 3.1. In Theorem 3.3, T: C - K~ C is Lipschitzian
with |T(f)—T(g)l <c|f— gl for all f, ge C. Similar remarks may be
made on Propositions 3.5 and 3.6 and Theorem 3.4.

4. APPROXIMATION PROBLEMS

In this section we apply the previous results to approximation problems.
For A< S we denote by |A4| the cardinality of A.

ExaMmpPLE 4.1 (Approximation by quasi-convex functions). Let S be a
nonempty convex subset of a vector space. A real function f on S 1s said
to be quasi-convex if

Slas+ (1 = A)r) <max{ f(s), (1)} (4.1)

holds for all s, 7€ S and all 0 <2< 1 [2, 14]. Without loss of generality we
may assume that s#¢ in (4.1). Let K be the set of all quasi-convex func-
tions in B. It is easy to verify that K is a closed cone which is not convex.
Let co(A4) denote the convex hull of 4 =S. By induction or otherwise, it
may be easily shown that f is quasi-convex if and only if for every nonempty
finite set 4 = S and seco(A4) we have

fls)<max{f(t):teA}. 4.2)

Clearly, we may assume that s¢ 4 in (4.2). In that case |4| = 2.

To place this problem in our earlier format of Section 3, let .« be the set
of all finite subsets of 4 of S with |4| =2 and t(4)=co(A4)\A. It is casy
to verify that S' = S\ E, where E is the set of extreme points of S [14]. For
each u € A, define functions ¢, on A as follows: ¢, (t)=1ift=u, =0if te A
and t#u. Then, if p=(4,s) where seco(4)\4, we let Q,={q,:uec A}
and define x5, and £, by (3.1) and (3.2), respectively. We then have

3 (=1 = q.() f()=fls)=flw), if q=q,,

1€ A

X,(f)=f(s)—max{f(u):ue A}.
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Clearly, K={keB:%,(k)<0, peP}. By Proposition3.2 we obtain
Ixk, | =Lw(s)+ 1/w(u) if g=gq,, and X, = Iw(s)+ max{l/w{u). ue A4}
< oo, Since g, ,=1 for all p, g we have g =1.

To establish the next lemma, note that P, is the set of all p=(4, s) such
that seco(4)\A. For any he B, we definc £° by (3.3) or (34), ie,

#°(s) =min{A(s), inf{max {h(u): ue A}: pe P }}, sesS’,
= h(s), seS: S (43

Clearly, h°<h < o. Note that, in general, /°> —oc is not true even if
he B. Since we are only interested in real functions, we impose the condi-
tion h°> — cc in the next lemma. However, it may be easily shown that 4°
satisfies (4.1) even if #°(s) = — oc for some s € S. Similar comments apply to
corresponding lemmas for other examples in this article.

LEMMA 4.1, If h° defined by (4.3) satisfies h° > —oc, then it is quasi-
convex.

Proof. For convenience denote #° by k. Let s5,teS with s#¢
x=/s+{1—A) where 0</i<1, and ¢>0. Note that x cannot be an
extreme point of S and hence xeS. We show that k& satisfies
max{k(s), k(1)} = k(x), which is (4.1).

Suppose first that s, 7€ S". Then there exist {4, s)e P, and (D, tje P,
such that

k(s)=min{h(s), max{h(u):ue A} —¢}, (4.4)
k(1) >min{h(t), max{h(u): ue D} —¢}. (4.5)

Suppose that the minimum in each of (4.4) and (4.5) is attained at the
second term on its right-hand side. Then with F=A4 U D we have

max{k(s), k(1)} > max{h(u):ue F} —e=M, {4.6)

say. Clearly, xeco(F). We now have two cases. If xeF, then
M = h(x)}—e 2 k(x)—c¢. If, on the other hand, x € co(F)\F, then (F, x)e P,
and M = k(x) — ¢ by the definition of k. Now suppose that the minimum in,
say, (4.4) is attained at the second term on its right-hand side, and in (4.5)
at h(r). Then k(¢) = h(z) and hence k(z) = h(t). In this case again (4.6) hoids
with F= AU {t}. Now considering the two cases x€ F and x ¢ F as above,
we conclude that M>k(x)—e If in (44) and (4.5), the minimum is
attained at A(s) and A(r), respectively, then k(s)=A(s) and k(¢t)=h(¢) as
above. If F= {s, 1}, then clearly, x € co(F)\F and, hence, (F, x)e P,. We
then have max{k(s), k(z)} = max{h(u): ue F} > k(x). We have shown that
(4.1) holds if s, re S’. The remaining cases for which seS’, 1e S\S' =E,
and s, € E may be analyzed as above. The proof is complete.
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A special case of the above lemma occurs when h=h,=f +a(f)/w for
fe B\K. Since by Proposition 3.4, h°= h? € B for all fe B\K, we conclude
that A°e K and h°=h. Consequently, Theorems 3.1 3.3 apply with ¢ =1
and ¢ = 2. In particular, using the values of |x} ||, we obtain from (3.6) the
duality
a, K) =) =sup fmin { L0,

w(s) + w(1) (f(Y) —f([))j te A}}, fe B\K,

where the supremum is taken over all (4, s) with A€ .o/ and seco(A4)\A.
If w=1, then Proposition 3.6 applies and, by (3.9), we have

d(f, Ky=a(f}=B(f)=sup{f(s) —max{f(t): re A}}/2
=|f=f12,  feB\K

where the supremum is taken as above. Other forms of duality may be
obtained from Theorem 3.2.

An explicit expression for the greatest K-minorant 4 of a bounded func-
tion h on § (ie., with w=1) is obtained in [21]. This cxpression is valid
when 4 € B, as may be casily shown. See also [23] in this connection. Note
that (4.3) gives another expression for 4. Rewriting (4.3) we obtain A(s) =
inf{max{h(t)}:1e D}}, seS, where the infimum is taken over all finite
subsets D of S such that |D| =1 and seco(D). We now consider a convex
S < R" and obtain stronger results using the well-known Caratheodory’s
Theorem.

PrROPOSITION 4.1. If Sc R", then it suffices to consider Ac=S with
2< 4| <n+ 1 in the above analysis, and, in particular, in (4.3).

Proof. Clearly, we may take |A|<n+1 in (4.2) and, hence, in the
definition of x7  and X,. Now consider (4.3) and let s §". For convenicnce
let p=inf{max{h(u):uecd}: peP,}. Let p=(A4,s)eP,. Since seco(4),
by Caratheodory’s Theorem [15], there exists Dc A with |D|<n+1
such that seco(D). Then (D,s)eP, and p<max{h(u):ueD}<
max{h(u):ue A}. It follows that we may consider only those 4 e.o/ with
|4 <n+1 in (4.3). The proof is complete.

Recall that the space C is defined at the end of Section 3. If S« R" is
compact and 4 is in C, then is its greatest K-minorant 4 is in C. A proof
of this is as in [23]. Consequently, the remarks made at the end of
Section 3 are applicable.

ExaMPLE 4.2 (Approximation by convex functions). Let S be a non-
empty convex subset of a vector space. A real function f of S is said to be
convex if

SUs+ (1 =<4 (s)+ (1 =2) f(1)
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holds for all 5, 7€ .S and all 0 < A < 1. Without loss of generality, let s#¢ in
the above definition. Let K be the sct of all convex functions in B. It is easy
to verify that K is a closed convex cone. By induction or otherwise it may
be easily shown that k is convex if and only if for every nonempty finite set
Ac S and every positive real function ¢ on 4 with 3 {g(¢):re A} =1 and
s=Y{g(t)t:te A} we have

fs)<Y {q) fln):1e 4} (4.7)
See, e.g., [14,15].
LemMa 4.2. It suffices to assume that s¢ A in definition (4.7).

Proof. We show that (4.7) with s¢ A implies (4.7) with s€ A. Assume
that se 4, s=> , g(t)t for some ¢(t) >0 for all rin 4 with }_, g(¢)=1. Let
D=A{s} and pu=gq(s). If ¢'(1)=¢q(t);(1 —u),teD, then ¢'{1)>0 and
Spq'(t)y=1. Since s=3Y ,q(r)¢, a minor rearrangement of terms shows
that =3, ¢'(¢)¢. Again, since s¢ D, we have f(s)<Y ,, ¢'(+) f(¢). Now it
is easy to verify that

2 g fley=(1 =) 3 q'(1) f() + uf(s) = (0 = p) fs)+ uf(s) = f(s).

The proof is complete.

Let o7 be the set of all finite subsets 4 of S with | 4| > 2. As justified by
Lemma 4.2, we assume that s¢ A, and hence 4| > 2. Let Ae.&/. We say
that se.S is a positive convex combination of all eclements in A if
s=Y ,q(t)t where q(t)>0for all te A and ), ¢(1)=1. Let po{A) denote
the set of all positive convex combinations of all elements in A. Then,
clearly po(A4) is convex and po(A4) = co(A4). Let 7(A4) =po(AN\A. We assert
that §'= S\ E, where E is as in Example 4.1. This follows because ue S\ F
if and only if there exist 5,7e S and 0< /<1 with u=/Js+ (1 —4)r, and
then ue1(A4) where A= {s, t} e.«/. For each p=(4,s) with sepo(4)\A4,
define @, to be the set of all functions ¢ on A with ¢>0, 3", ¢(¢)=1, and
s=2 44q(1)t. Recall that Q, may be allowed to be infinite for a convex cone
K. Define x}¥, by (3.1). Then, K={feB:x} (f)<0 for all p,q}. By
Proposition 3.3, we obtain, | x¥ | = 1/w(s)+ |q|. Again 6, ,=1 for all p, ¢
and, hence, o = 1. Note that P, is the set of all p = (A4, s) with se po(4)\A4.
Recall the remarks preceding Lemma 4.1.

LEMMA 4.3, If h° defined by (3.11) or (3.12) satisfies h° > — =, then it
is convex.



334 VASANT A. UBHAYA

Proof. We let k=h® for convenience. Let s,1eS with s#¢,
x=2As+(1—4)t where 0 <i<1, and £¢>0. As in Example 4.1, xe §’. We
show that 2k(s) + (1 — 1) k() = k(x). The various cases to be considered in
this proof are as in Lemma 4.1. We omit similar details while emphasizing
the differences.

Suppose first that s, 1€ S". Then, by (3.12), there exist p= (4, s)eP,,
p'=(D,1)eP, geQ,, and ¢'€Q, (p=p’) such that s=3% ,q(u)y,
t=Yp5q'(u)u, and

k(s) > min {h(s), Y q(u) h(u)— 8},

A

k(1) = min {h(t), Y q'(u) h(u) — 8}.

D

Suppose first that the minimum in each of the above two inequalities is
attained at the second term on its right-hand side. Let F=A4uD and
define r(u) for ue F by

r(u)y=Ag(u)+ (1 —4) ¢'(u), if uedn D,
= Ag(u), if ueA\D,
=(1—-2)q'(u), if weD\A.

Then r>0, Y ,r(u)=1, and x = X r(u)u. Clearly, x e po(F) and we have

Mke(s)+ (1 —4) k(1) Zr u)—e=M,

say. If xepo(F)\F, then (F, x)e P, and M > k(x)—¢ by the definition
of k. Now suppose that xeF. Define G=F\{x}, p=r(x), and
r'(u)=r(u))/(1—p) for ueG. Then r>0, X ;r'(u)=1, and x=3 ; r'(u)u
Since x € po(G)\G, we find that (G, x)e P, and 3 ; r'(u) h(u) = k(x). Now
a minor computation as in Lemma 4.2 combined with A(x) = k(x) gives us

) (u)h(u)—(l—#)z h(u) + ph(x) 2 (1 — p) k(x) + pk(x) = k(x).

F

Hence M > k(x)—¢. The remaining cases are as in Lemma 4.1 and their
proof is as given above. The proof is complete.

A special case of the above lemma occurs when A= h,= f +a( f)/w for
feB\K. By a version of Proposition 3.4 as applied to convex K, we
conclude that A°=h%e K for all fe B\K, and hence h°=h. Consequently
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Theorem 3.4 applies with 0 =1 and ¢ =2. In particular, using the value of

ix¥ | we obtain from (3.13) the duality

d(f. K)=2(f)

. {.f’(s)—z,, 4(0) f(2)
P (s + 1g]

——-(A,s)eP,qu,,}, feB.K. (4.8)

If w=1, we obtain from (3.14) the following for f € B K:

AU Ky =)
=sup {15~ £ a0 (0 p= (A 5) PogeQ,} 2= 17 =72 (49)

The equality, d(f, K)=[f— fil/2, appearing in (4.9) is established in
22,237 by different methods. This equality and [ {5, Theorem 5.6] with
the substitution = f and f;= f give an alternative proof of (4.9).

An explicit expression for the greatest K-minorant 4 of he 8 may be
obtained as below. The epigraph E(h) of 4 is defined by

Ehy={(s,u)e Sx R: u=h(s)}. (4.10)
Then
h(sy=1inf{u: (s, p) e co(E(h))}.

For a proof see [15, p.36]. Another expression for # may be based on
(3.12) or [15, Theorem 5.6] as observed above.
We now obtain stronger results for a convex S< R”,

PROPOSITION 4.2. If Sc R" then it suffices to consider A with
2<|A|€n+1 in the above analysis and, in particular, in the definition
(3.11) or (3.12) of h°.

Proof. Clearly, we may take j4| <n+1 in (4.7) and hence in the
definition of x¥ . Now consider (3.12). Let se 8, pe P, and g€ Q,,. For
convenience, let 8=3,¢(1) h(t) and p=inf{3 q(t) h(t): pe P, qeQ,}.
We then have u <6 and (s, #)epo(4’)=co(4’), where (s,8)e R"~" and
A= {(t,h(1)):te A} = R""'. By Caratheodory’s Theorem [15, Corollary
17.1.1], there exists Ec A" with |E|<n+2 such that points in £ are
affinely independent and (s, 0)e co(E). Then co(E) is a simplex in R"*' "
We now argue as in the proof of [15, Coroliary 17.1.3]. Since (s, 8) is in
the simplex, there is a minimal ¢’ <6 such that (s, 8°) is in the same sim-
plex. Then, as in that proof, we may find D = 4 with |D| <#n+ 1 such that
if D'={(1,h(1)):1e D} then (s, 8"Yeco(D’). Thus, co(D’} is a subsimplex

640 64 1.7
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of co(E). Then s=3, A1), 8=, () h(¢) for some /(t)>0 and
S A(t)=1. (If 2(¢t)=0 for some ¢, then we may delete that pint from D.)
Since s¢ A, s¢ D. Thus (D, s)e P, and u <0 <0. It follows that we may
include only thosec 4 in (3.12) such that |4| <n+ 1. The proof is complete.

If Sc R" is a polytope and 4 is in C, then its greatest K-minorant 4 is
in C. (A polytope is a convex hull of a finitely many points and hence, is
compact.) This assertion may be proved as in [23]. Consequently, the
remarks made at the end of Section 3 are applicable here. The problem of
this section on C when n=1 and w=1 is considered in [25].

We make a remark on Example 4.1. Tt may be easily shown that f is
quasi-convex if and only if (4.2) holds for every finite set A< S and
sepo(4)\A. Hence, we may define 1(A)=po(A4)\A4 and replace co(4) by
po(A) everywhere in that example.

ExaMPLE 4.3 (Approximation by sub-additive functions). Let S= (0, b),
where 0 <b < «, be a real interval. A real function f on S is said to be
sub-additive if

fs+0)<f(s)+f()

holds for all s,1eS with s+1€S [9,16]. Let K be the set of all sub-
additive functions in B. 1t is easy to verify that K is a closed convex cone.
A function ¢ on a subset of S is called positive integral if its range is
positive integers. By induction or otherwise it may be easily shown that f
is sub-additive if and only if for every nonempty finite set A< S and
positive integral function ¢ on A with s=3 , g(t)1e S we have

S)<Y {q() f(1): 1€ 4}.

We may assume that s¢ 4 in the above definition. Because if se 4, then
s=Y ,q(1)t implies that 4= {s} and ¢(s) = 1. Since 0 is sub-additive but
—1 is not, we conclude that X is not closed under translation by constant
functions. The remarks following Proposition 3.6 are applicable here.

We say that se R is a positive integral combination of all elements in 4
if s=3 ,q(¢)t for some positive integral function ¢ on A. Let pi(4), called
the positive integral hull of 4, denote the set of all positive integral com-
binations s of all elements in A such that seS. This set corresponds to
po(A4) in Example 4.2. Let .o/ be the set of all nonempty finite subscts 4 of
S such that pi(4)\A4 # . Note that if 4 in o/ is a singleton and equals {r}
then 2 € S, otherwise pi(4)\A = . If |4| = 2, then the sum of elements in
A isin S. Let 1(4)=pi(4)\A. We assert that S'=S. To see this for s in
S, let A={t}, where t=s/2. Then se1(4) and S$'=S. For cach
p=(A4,s)e P with sepi(4)\4, define @, to be the set of all positive
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integral functions ¢ on A such that s=Y , g(¢)¢. By the above stated condi-
tion on A, we have Q,# J: since, if [A] =2, then Q, contains the unity
function ¢=1 on A, otherwise, if |4| =1, then Q, contains the function
g=2 on A. Define x*, by (3.1). Then K= {feB:x} (f)<0, all p,q;.
Clearly, 0, ,>2 for all p, g and, hence, g > 2. {t is easy to show that ¢ = .

Limva 4.4, If h° defined by (3.11) or (3.12) satisfies h° > — ., then it
is sub-additive.

Proof. The proof is similar to that of Lemma 4.3, however, much
simpler. For example, if 5,7 and x=s5+1¢ are in S, and 4 and D arc
sets corresponding to s and ¢ as in Lemma 4.3, then it may be easily seen
that x¢ F= AU D. Hence xe pi(F)\F and the case xe F does not occur.
We omit further details. The outline of the proof is complete.

Arguing as in Example 4.2, we conclude that the duality in Theorem 3.4
applies. In particular, (4.8) and (4.9) hold with appropriate interpretations
of P and @,. Since ¢ =0 = 0, the Lipschitzian sclection of Theorem 3.4
does not apply.

We now obtain an explicit expression for the greatest K-minorant A of
he B. We first introduce some difinitions. A subset H of Sx R is called
integral if whenever (s, 4), (+, u)e H and s+ 1€ S, then (s+1, .+ pu)eH.
The next lemma justifies this terminology. Let # denote all the integral
subscts H of Sx R. Clearly, Sx Re #. It is casy to scc that # is closed
under arbitrary interscctions. Hence, given G < § x R there exists a smallest
set in 5 containing G, which is the intersection of all the sets in # con-
taining G. It is called the integral hull of G and is denoted by in (G). The
results of the next lemma are similar to thosc in convexity theory [{4]; an
integral set corresponds to a convex set and in(G) to the convex hull co{G).

Lemva 4.5 (a) A subset H of Sx R is integral if and only if the
Jfollowing holds. For every finite subset {(s,;, 7;}: 1 <i<n}c H and positive
integers m,, | <i<n, if Y m,s,€ 8, then (T m;s;.3 mi)eH.

(b} Suppose G = Sx R. Then (s, A)€in(G) if and only if there exists a
Sfinite subset {(s,, ~;):1<i<n}cG and positive integers m; such that
s=y ms;and =3 mi,.

Proof. The proof follows directly from the definitions as in convexity
theory. Sce, e.g., Thecorems B and D of [14, p. 75]. Part (1) may be proved
by induction on » and (ii) by using (i). The outline of the proof is compicte.

Recall that the epigraph of a function is defined by (4.10).

LEMMA 4.6. A function [ in B is sub-additive if and only if its epigraph
E(f) is integral.
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Proof. Let f be sub-additive and (s, 2)€E(f), 1<i<n, with
> m;4;€ S for some positive integers m,. Then 4,2 f(s;). Now f(3 m;s,) <
> m, f(s;)<m;A;. Hence, (3> m;s;,>mi)eE(f) and E(f)es# by
Lemma45 Conversely, let E(f)es# and s,teS with s+teS. Then
(s, f(s)), (¢, f(t))€ E(f). Hence (s + ¢, f(s) + f(¢)) € E(f) which implies that
f(s)+ f(1)= f(s +1). The proof is complete.

PROPOSITION 4.3. If h is the greatest K-minorant of he B, then
h(s)=inf{2: (s, )ein(E(h))}, SES.

Proof. Let k(s) denote the right-hand side of (4.11). We show that
h=k. By definition, he Kc B. Since h<h we have E(h)> E(h). By
Lemma 4.6, E(h)e #. Hence E(h)>in(E(h))> E(h). It follows that
h<k<h and, hence, k € B. Since in(E(h))e s#, by Lemma 4.6, k is sub-
additive, and hence ke K. By the definition of # we have k </ and thus
k = h. The proof is complete.

Another expression for 4 may be obtained from (3.12).

5. EXTENSIONS AND APPLICATIONS

In this section, we extend previous results to more complex cones and
indicate applications to approximation problems.

Let K= {feB:%,(f)<0, pe P} as in Section 3 with finite Q,, for each
peP, and K' = {feB x},(f)<0, peP', qeQ,}, where P’ and Q,,
pe€ P, are index sets and @, may be infinite. We arc interested in finding
a best approximation from the conc K K'. The results for this case may
be easily obtained by arguing as for the convex cone in Section 3. Specifi-
cally, #° equals the minimum of the right-hand sides of (3.3) and (3.11)
with the change that P, and Q, in (3.11) are respectively replaced by P
and Q). Similarly, a(f) equals the maximum of the right-hand sides of
(3.6) and (3.13), again, with P and @, in (3.13) replaced by P’ and Q,,
respectively. Obvious simplifications may be made in both cxpressions.
Modifications for other results are similar. Now suppose that Ec S,
K"={feB: f(s)<0, se E} and approximation is from Kn K'nK". We
may then let x;“(f)=f(s), s€ E. This functional may be considercd as a
special case of x}, where p= (A4, s) and g is the zero function on A4. As in
Proposition 3.2 we have | x¥|| = 1/w(s). This functional may be handled by
letting A°(s) <0 for all se E.

ExaMPLE 5.1. To illustrate an application, we let S be any set with
partial order <. A partial order on S is a reflexive and transitive relation
on S which is not necessarily anti-symmetric [7]. If 5, € S and s< ¢ but
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s#1 then we write s <t Let £ and F be subsets of S and K be the set of
all f in B satisfying

Jis) < f(1), s,teSands<1, (5.1)
fls) <0, seE, (5.2)
f(5)=0, seF. (5.3

The problem is to find a best approximation to f from K If
G={seS:s<tfor some re E} and H= {1eS:s<! for some se F}, then
{5.2) and (5.3) are respectively equivalent to

f(s)<0,  seG, (5.4)
f5)=0, seH (5.5)

It is easy to show that K is a closed convex cone. We consider the special
cases of K later. This problem has been considered by different methods in
[19]. We show that it falls in the framework of this article. We also identify
Lipschitzian selections which are not considered in [19]. For the purpose
of analysis, we define K, (resp. K,) to be the sct of all /in B satisfying (5.1)
and (5.4) (resp.(5.5)). Both K, and K, are closed convex cones and
K=K nK,.

To apply the results of Section 3 to K, let . consist of all the singleton
subsets A= {r} of S such that there exists seS with s<z Then
et t({r})={seS:s<t}. Define P={({t},s): {t}es, ser({t})} Iif
p=({t},s)e P, then let Q,={q}, where ¢(:)=1. This gives x} (/)=
f(s)— f(t), which corresponds to (5.1). As observed before, (5.4) gives the
functional x}*(f) = f(s) <0, se G. By Proposition 3.2, thesc two functionals
have the norms 1/w(s)+ 1/w(t) and 1/w(s) respectively. Similarly, K, may
be analyzed by symmetric methods by considering the inequalities
x¥,(f)=0 instead of x} (f)<0. In the following proposition, 4° is
obtained by applying (3.11) or (3.12) to K, and letting #°(s})<0 on G.
Similarly, £° is obtained from a symmetric version of (3.11) as applied to
K,. Note that ¢ = 1. We denote the characteristic function of a set D by y,,,
and let 0-c=0-(—20)=0.

LemMma 5.1, Let h, k€ B and define

A°(s)=min{inf{h(1): te S, s <1}, (1 —x1s(s)}, sES, (5.6)
k°(s)y=max{sup{h(1):1€S,1<s}, —c(l —z5(s))} seS. (5.7

If B°> —cc, then h° satisfies (5.1) and (5.4). Similarly, if k® < x, then k°
satisfies (5.1) and (5.5).
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Proof. The proof is straightforward and hence omitted.

Define,

91(f)=SUp{%(f( —f(1):5,t€S, s<t}

0,(f)=sup{w(s) f(s):s€ G},
8:(f) =sup{—w(s) f(s):se H}.

The above three numbers are sup{x*(f)/[x*||} corresponding to (5.1),
(5.4). and (5.5) respectively. Let a(f)=max{0,(f):1<i<3}, «,(f)=
max{0,(f), 8,(f)}, and x(f)=max{6,(f), 0;(f)}. Note that a,(f)
corresponds to K; as in (3.13), 1 <i<2.

PROPOSITION S.1. Ler fe B\K, h=f+a(f)/w, and k= f—a(f)/w. Let
also h° and k° be defined by (5.6) and (5.7) respectively for theve h and k.
Then h=h" and k = k°, where h is the greatest K-minorant of h and k is the
smallest K-majorant of k. The duality, d(f, K) = 2(f), holds, and h and k are,
respectively, the maximal and minimal best approximation to f with k <h.
For feK, let h=k=f Then ge K is a best approximation to fe€ B if and
only if k< g<h IfO0<Ai<|, then f"=/h+ (1 — i)k is a best approxima-
tion to € B and the operator T;: B — K defined by T,(f)=f" is Lipschit-
zian with ¢=2 for all 0< 2 < 1.

Proof. Since 2(f)=x(f), by Lemma 5.1 and the corollary to Proposi-
tion 3.4 as applied to the convex cone K, we conclude that /= h°, where
h is the greatest K,-minorant of A and |k — Al <2x(f). Similarly, since
a(f)=Z%,(f), by Lemma 5.1 and a symmetric version of the corollary
applied to K,, we conclude that k = k°, where & is the smallest K,-majorant
of fand ||k — k| <2x(f). It is easy to establish by some simple computa-
tions that k < /. Hence k<0 on G and >0 on H. Tt follows that k, ie K.
Since K< K,, we find that / is the greatest K-minorant of A. Similarly,
k is the smallest K-majorant of k. Clearly, d(f, K,)=«,(f) and
a(f, K») =z a,(f). (Using Theorem 3.4 wec may show that equalmes hold
here.) Hence, by Proposition 2.3, d(f, K) 2 max{d(f, K,): 1 <i<2} = a(f).
Since f=h—x(f)/w, by arguing as in Theorem 3.1, we have ||f—h|<
a(f). Hence, h is a best approximation to f. It is the maximal best
approximation because # is the greatestt K-minorant of 4. Similarly, k is
the minimal best approximation to f The remaining statements follow
easily. Since ¢ =1 we have ¢ =2. The proof is complete.

We now consider special cases of Example 5.1. If S= x{[a;, b,]:
1 <i<n}is a rectangle in R" and the partial order on S is the usual order
on R”, then the problem is the monotone approximation problem with
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constraints (5.2) and (5.3). Let S=[0, 6] be a real interval. A function f
on S is called star-shaped if f(xs)<af(s) for all 0<s<h and 0<a<!
{1, 11]. Tt can be casily shown that f is star-shaped if and only if f(0) <0
and f(s)/s < f(1)/t for all 0 <s<t<h. As shown in [19], this problem is
a special case of Example 5.1.

We now obtain the duality result for the problem of approximation by
quasi-convex functions (Example 4.1) on a real interval /. It has a richer
structure than that of Example 4.1 on R” for n=2. Sec [21] for details.
This problem with w=1 on a compact real interval was considered in
[207, however, the arguments for any interval are similar. We use the nota-
tion of [20] applied to an arbitrary /. We consider I with the partial order
P (resp. P}) for each xel and apply Proposition 5.1 to convex cones
K7 (resp. K}) to obtain the following duality results. Let m(s. 7)=
wi{s) w(2)/(w(s)+ w(z)). Then,

dif. K;)=0, =max{sup{m(s, 1)(f(1)— f(s)):s.te [, s<1<x},

VAN
N

s, ielx<s<t};

) 7
Yis,tel, s<t<x},

sup{m(s. )(f(s)—f(1)):s, 1€, x<s<t} )

Since K={J{K; v K] :xel}, Proposition 2.3 gives us the duality for X as
follows.

d(f, K)=inf{min{0 ,0}:xel}. (5.8}

Now, the results for Example 4.1 applied to this special case show that 4,
the greatest K-minorant, is the maximal best approximation. When w=1,
(5.8) is essentially included in [20, Theorem 4.2]. If fe C, then 6, =0,
and the duality takes a simpler form. This case with w=1 is considered
in [24].
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